![难点解析冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734441/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734441/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734441/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后作业题
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后作业题,共38页。试卷主要包含了在中,,,给出条件,将一把直尺等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
A. B. C. D.
2、如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )
A.54° B.36° C.32° D.27°
3、如图,已知的内接正六边形的边心距是,则阴影部分的面积是( ).
A. B. C. D.
4、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是( )
A.① B.② C.③ D.①或③
5、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )
A.6 B. C.3 D.
6、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A. B.四边形EFGH是菱形
C. D.
7、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是( )
A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内
C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外
8、如图,与的两边分别相切,其中OA边与⊙C相切于点P.若,,则OC的长为( )
A.8 B. C. D.
9、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )
A.12 B.14 C.16 D.18
10、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,平分,平分,,交于点,cm,cm,cm,则的面积为_______cm2.
2、如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且,过点A作量角器圆弧所在圆的切线,切点为E,则是______度.
3、点P为⊙O外一点,直线PO与⊙O的两个公共点为A,B,过点P作⊙O的切线,切点为C,连接AC,若∠CPO=40°,则∠CAB=_____度.
4、如图,直线AB与x轴、y轴分别相交于A、B两点,点A(-3,0),点 B(0,),圆心P的坐标为(1,0),圆P与y轴相切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,令圆心P的横坐标为m,则m的取值范围是________.
5、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.
(1)求证:是的切线;
(2)若,求阴影部分的面积.(结果保留)
2、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.
(1)小明给出下列解答,请你补全小明的解答.
小明的解答
过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
∵OP+PQ>OQ,OQ>ON,
∴ .
又ON=OM+MN;
∴OP+PQ>OM+MN.
又 ,
∴ .
(2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
(3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
3、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.
(1)求证:AB是的切线;
(2)若,,求的半径.
4、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:
(1)如图1,当与相切于点时,求的长;
(2)如图2,当与相切时,
①求的长;
②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
5、如图,⊙O是ABC的外接圆,∠ABC=45°,OCAD,AD交BC的延长线于D,AB交OC于E.
(1)求证:AD是⊙O的切线;
(2)若AE=,CE=2,求⊙O的半径和线段BC的长.
-参考答案-
一、单选题
1、C
【解析】
【分析】
如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
【详解】
解:如图,五边形ABCDE为正五边形,
∴五边形的每个内角均为108°,
∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
∴∠BGF=∠BFG=72°,
设AF=x,则AC=1+x,
解得:,
经检验:不符合题意,舍去,
故选C
【点睛】
本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
2、D
【解析】
【分析】
由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.
【详解】
解:∵AB为⊙O的切线,
∴∠OAB=90°,
∵∠ABO=36°,
∴∠AOB=90°﹣∠ABO=54°,
∵OA=OD,
∴∠ADC=∠OAD,
∵∠AOB=∠ADC+∠OAD,
∴∠ADC=∠AOB=27°;
故选:D.
【点睛】
本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.
3、D
【解析】
【分析】
连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.
【详解】
解:连接、,
,的内接正六边形,
,
∴△DOE是等边三角形,
∴∠DOM=30°,
设,则
,
解得:,
,
根据图可得:,
,
.
故选:D.
【点睛】
本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.
4、B
【解析】
【分析】
画出图形,作,交BE于点D.根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断①②;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意.
【详解】
如图,,,点C在射线上.作,交BE于点D.
∵,
∴为等腰直角三角形,
∴,
∴不存在的三角形ABC,故①不符合题意;
∵,,AC=8,
而AC>6,
∴存在的唯一三角形ABC,
如图,点C即是.
∴,使得BC的长唯一成立,故②符合题意;
∵,,
∴存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点C和即为使的外接圆的半径等于4的点.
故③不符合题意.
故选B.
【点睛】
本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质.利用数形结合的思想是解答本题的关键.
5、D
【解析】
【分析】
如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
【详解】
解:如图所示,设圆的圆心为O,连接OC,OB,
∵AC,AB都是圆O的切线,
∴∠OCA=∠OBA=90°,OC=OB,
又∵OA=OA,
∴Rt△OCA≌Rt△OBA(HL),
∴∠OAC=∠OAB,
∵∠DAC=60°,
∴,
∴∠AOB=30°,
∴OA=2AB=6,
∴,
∴圆O的直径为,
故选D.
【点睛】
本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
6、C
【解析】
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
∴EF=2CE,
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
7、A
【解析】
【分析】
根据数轴以及圆的半径可得当d=r时,⊙A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可
【详解】
解:∵圆心A在数轴上的坐标为3,圆的半径为2,
∴当d=r时,⊙A与数轴交于两点:1、5,
故当a=1、5时点B在⊙A上;
当d<r即当1<a<5时,点B在⊙A内;
当d>r即当a<1或a>5时,点B在⊙A外.
由以上结论可知选项B、C、D正确,选项A错误.
故选A.
【点睛】
本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.
8、C
【解析】
【分析】
如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
【详解】
解:如图所示,连接CP,
∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
∴∠CPO=90°,∠COP=45°,
∴∠PCO=∠COP=45°,
∴CP=OP=4,
∴,
故选C.
【点睛】
本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
9、B
【解析】
【分析】
⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
【详解】
解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
则∠CDI=∠C=∠CFI=90°,ID=IF=1,
∴四边形CDIF是正方形,
∴CD=CF=1,
由切线长定理得:AD=AE,BE=BF,CF=CD,
∵直角三角形的外接圆半径为3,内切圆半径为1,
∴AB=6=AE+BE=BF+AD,
即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
故选:B.
【点睛】
本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
10、A
【解析】
【分析】
连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
【详解】
解:连结OC,
∵以边上一点为圆心作,恰与边,分别相切于点A, ,
∴DC=AC,OC平分∠ACD,
∵,,
∴∠ACD=90°-∠B=60°,
∴∠OCD=∠OCA==30°,
在Rt△ABC中,AC=ABtanB=3×,
在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
∴OD=OA=1,DC=AC=,
∴,,
∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
∴,
S阴影=.
故选择A.
【点睛】
本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
二、填空题
1、1.5
【解析】
【分析】
根据平分,平分,,交于点,得出点是的内心,并画出的内切圆,再根据切线长定理列出方程组,求出的边上的高,进而求出其面积.
【详解】
解:平分,平分,,交于点,
点是的内心.
如图,画出的内切圆,与、、分别相切于点、、,且连接,
设,,,得方程组:
解得:,
,
的面积.
故答案为:1.5.
【点睛】
此题主要考查三角形内切圆的应用,解题的关键是熟知三角形内切圆的性质,根据其性质列出方程组求解.
2、
3、25或65
【解析】
【分析】
由切线性质得出∠OCP=90°,根据圆周角定理和等腰三角形的性质以及三角形的外角性质求得∠CAB或∠CBA的度数即可解答.
【详解】
解:如图1,连接OC,
∵PC是⊙O的切线,
∴OC⊥PC,即∠OCP=90°,
∵∠CPO=40°,
∴∠POC=90°-40°=50°,
∵OA=OC,
∴∠CAB=∠OCA,
∴∠POC=2∠CAB,
∴∠CAB=25°,
如图2,∠CBA=25°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠CBA=65°,
综上,∠CAB=25°或65°.
【点睛】
本题考查圆周角定理、切线的性质、等腰三角形的性质、三角形的外角性质、直角三角形的两锐角互余,熟练掌握切线性质和等腰三角形的性质是解答的关键.
4、
【解析】
【分析】
当⊙P在直线AB下方与直线AB相切时,可求得此时m的值;当⊙P在直线AB上方与直线AB相切时,可求得此时m的值,从而可确定符合题意的m的取值范围.
【详解】
∵圆心P的坐标为(1,0),⊙P与y轴相切与点O
∴⊙P的半径为1
∵点A(-3,0),点 B(0,)
∴OA=3,
∴
∴∠BAO=30°
当⊙P在直线AB下方与直线AB相切时,如图,设切点为C,连接PC
则PC⊥AB,且PC=1
∴AP=2PC=2
∴OP=OA−AP=3−2=1
∴P点坐标为(−1,0)
即m=−1
当⊙P在直线AB上方与直线AB相切时,如图,设切点为C,连接PD
则PD⊥AB,且PD=1
∴AP=2PD=2
∴OP=OA+AP=3+2=5
∴P点坐标为(−5,0)
即m=−5
∴⊙P沿x轴向左移动,当⊙P与直线AB相交时,m的取值范围为
故答案为:
【点睛】
本题考查了直线与圆相交的位置关系,切线的性质定理等知识,这里通过讨论直线与圆相切的情况来解决直线与圆相交的情况,体现了转化思想,注意相切有两种情况,不要出现遗漏的情况.
5、①②④
【解析】
【分析】
连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
【详解】
解:连接OM,
∵PE为的切线,
∴,
∵,
∴,
∴,
∵,,
∴,
即AM平分,故①正确;
∵AB为的直径,
∴,
∵,,
∴,
∴,
∴,故②正确;
∵,
∴,
∵,
∴,
∴的长为,故③错误;
∵,,,
∴,
∴,
∴,
∴,
又∵,,,
∴,
又∵,
∴,
设,则,
∴,
在中,,
∴,
∴,
由①可得,
,
故④正确,
故答案为:①②④.
【点睛】
本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
(2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
(1)
证明:连接OD,
∵,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴AE∥OD,
∴∠E+∠ODE=90°,
∵DE⊥AC,
∴∠E=90°,
∴∠ODE=180°﹣∠E=90°,
∵OD是圆O的半径,
∴DE是⊙O的切线;
(2)
连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ADE=60°,∠E=90°,
∴∠CAD=90°﹣∠ADE=30°,
∴∠DAB=∠CAD=30°,
∴AB=2BD,
∵,
∴
∴BD=2,BA=4,
∴OD=OB=2,
∴△ODB是等边三角形,
∴∠DOB=60°,
∴△ADB的面积=AD•DB
=×2×2
=2,
∵OA=OB,
∴△DOB的面积=△ADB的面积=,
∴阴影部分的面积为:
△ADB的面积+扇形DOB的面积﹣△DOB的面积
=2﹣
=,
∴阴影部分的面积为:.
【点睛】
本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.
2、 (1)OP+PQ>ON; OP=OM;PQ>MN
(2)见解析
(3)1<r<4
【解析】
【分析】
(1)利用两点之间线段最短解答即可;
(2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
(3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
(1)
理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
∵OP+PQ>OQ,OQ>ON,
∴OP+PQ>ON.
又ON=OM+MN;
∴OP+PQ>OM+MN.
又 OP=OM,
∴PQ>MN.
故答案为:OP+PQ>ON, OP=OM,PQ>MN;
(2)
解:如图,
⊙O是求作的图形;
(3)
(3)如图2,
作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
∴∠FEO′=∠AFE=90°,
∴AF∥EO′,
∴∠AEO′=∠BAC=60°,
∵AO′=EO′,
∴△ADO′是等边三角形,
∴AE=AO′,
∵AB=8,∠B=30°,
∴AC=AB=4,
∴AF=2,
∴⊙O的半径是1,
∴AE=AB=4,
∴1<r<4,
故答案是:1<r<4.
【点睛】
本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.
3、 (1)见解析
(2)2.4.
【解析】
【分析】
(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;
(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.
(1)
如图所示:过O作OD⊥AB交AB于点D.
∵OC⊥BC,且BO平分∠ABC,
∴OD=OC,
∵OC是圆O的半径
∴AB与圆O相切.
(2)
设圆O的半径为r,即OC=r,
∵
∴
∴
∵OC⊥BC,且OC是圆O的半径
∴BC是圆O的切线,
又AB是圆O的切线,
∴BD=BC=3r
在中,
∴
∴
在中,
∴
整理得,
解得,,(不合题意,舍去)
∴的半径为2.4
【点睛】
此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.
4、 (1)BP=2
(2)①4.8;②9.6
【解析】
【分析】
(1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
(2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
(1)
连接PT,如图:
∵⊙P与AD相切于点T,
∴∠ATP=90°,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,
∴四边形ABPT是矩形,
∴PT=AB=4=PE,
∵E是AB的中点,
∴BE=AB=2,
在Rt△BPE中,;
(2)
①∵⊙P与CD相切,
∴PC=PE,
设BP=x,则PC=PE=10-x,
在Rt△BPE中,BP2+BE2=PE2,
∴x2+22=(10-x)2,
解得x=4.8,
∴BP=4.8;
②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:
由题可知,EM是△ABQ的中位线,
∴EM∥BQ,
∴∠BEM=90°=∠B,
∵PN⊥EM,
∴∠PNE=90°,EM=2EN,
∴四边形BPNE是矩形,
∴EN=BP=4.8,
∴EM=2EN=9.6.
故答案为:9.6.
【点睛】
本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
5、 (1)见解析
(2)4,
【解析】
【分析】
(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;
(2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.
(1)
证明:连接OA.
∵,
∴∠AOC+∠OAD=180°,
∵∠AOC=2∠ABC=2×45°=90°,
∴∠OAD=90°,
∴OA⊥AD,
∵OA是半径,
∴AD是⊙O的切线.
(2)
解:设⊙O的半径为R,则OA=R,OE=R-2.
在Rt△OAE中,,
∴,
解得或(不合题意,舍去),
延长CO交⊙O于F,连接AF,
∵∠AEF=∠CEB,∠B=∠AFE,
∴△CEB∽△AEF,
∴,
∵CF是直径,
∴CF=8,∠CAF=90°,
又∵∠F=∠ABC=45°,
∴∠F=∠ACF=45°,
∴AF=,
∴,
∴BC=.
.
【点睛】
此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.
相关试卷
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀精练,共30页。试卷主要包含了在中,,,给出条件等内容,欢迎下载使用。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题,共37页。
这是一份初中冀教版第29章 直线与圆的位置关系综合与测试优秀精练,共35页。试卷主要包含了如图,PA等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)