![2022年必考点解析鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734391/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734391/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734391/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试单元测试测试题
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试单元测试测试题,共23页。试卷主要包含了下列各角中,为锐角的是等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A. B. C. D.2、已知点C、D在线段AB上,且AC:CD:DB=2:3:4,如果AB=18,那么线段AD的长是( )A.4 B.5 C.10 D.143、如图,点A,B在线段EF上,点M,N分别是线段EA,BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长为( )cmA.10 B.11 C.12 D.134、下列图形中,能用,,三种方法表示同一个角的是( )A. B.C. D.5、如图所示,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.图中共有三个角:∠AOB,∠AOC,∠BOCC.∠β+∠AOB=∠AOCD.∠AOC也可用∠O来表示6、下列各角中,为锐角的是( )A.平角 B.周角 C.直角 D.周角7、钟表10点30分时,时针与分针所成的角是( )A. B. C. D.8、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的( )A.东南方向 B.西南方向 C.东北方向 D.西北方向9、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )A. B. C. D.10、已知与满足,下列式子表示的角:①;②;③;④中,其中是的余角的是( )A.①② B.①③ C.②④ D.③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当时钟指向下午2:40时,时针与分针的夹角是_________度.2、如图,将三个形状、大小完全一样的正方形的一个顶点重合放置,若,,则_____.3、如图,邮局在学校( )偏( )( )°方向上,距离学校是( )米.4、如图已知,线段,,为线段的中点,那么线段_________. 5、如果∠A=34°,那么∠A的余角的度数为_____°.三、解答题(5小题,每小题10分,共计50分)1、如图,线段AB=12,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;(2)若在线段AB上有一点E,,求AE的长.2、如图,将一副直角三角板的直角顶点C叠放在一起.(1)若,则______;若,则______;(2)猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.(3)若,求∠DCE的度数.3、如图,已知线段AB=12cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.(1)若AC=4cm,EF=___cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.4、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.5、如图①.直线上有一点, 过点在直线上方作射线, 将一直角三角板(其中)的直角顶点放在点处, 一条直角边在射线 上, 另一边OA在直线DE的上方,将直角三角形绕着点O按每秒的速度顺时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到图②的伩置时, 射线恰好平分, 此时, 与 之间的数量关系为____________.(2)若射线的位置保持不变, 且,①在旋转过程中,是否存在某个时刻,使得射线, 射线, 射线中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出的值; 若不存在, 请说明理由;②在旋转过程中, 当边与射线相交时, 如图③, 请直接写出的值____________. -参考答案-一、单选题1、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得∴∠1补角的度数为故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.2、C【解析】【分析】设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.【详解】∵AC:CD:DB=2:3:4,∴设AC=2x,CD=3x,DB=4x,∴AB=9x,∵AB=18,∴x=2,∴AD=2x+3x=5x=10,故选:C.【点睛】本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.3、C【解析】【分析】由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.【详解】解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA=x,NB=BFx,∴MN=MA+AB+BN=x+2x+x=4x,∵MN=16cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故选C.【点睛】本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.4、A【解析】【分析】根据角的表示的性质,对各个选项逐个分析,即可得到答案.【详解】A选项中,可用,,三种方法表示同一个角;B选项中,能用表示,不能用表示;C选项中,点A、O、B在一条直线上,∴能用表示,不能用表示;D选项中,能用表示,不能用表示;故选:A.【点睛】本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.5、D【解析】【分析】根据角的表示方法表示各个角,再判断即可.【详解】解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.【点睛】本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.6、B【解析】【分析】求出各个选项的角的度数,再判断即可.【详解】解:A. 平角=90°,不符合题意;B. 周角=72°,符合题意;C. 直角=135°,不符合题意;D. 周角=180°,不符合题意;故选:B.【点睛】本题考查了角的度量,解题关键是明确周角、平角、直角的度数.7、B【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:10点30分时的时针和分针相距的份数是4.5,10点30分时的时针和分针所成的角的度数为30°×4.5=135°,故选:B.【点睛】本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.8、B【解析】略9、C【解析】【分析】根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.【详解】解:,点A到原点的距离最大,点其次,点最小,又,原点的位置是在点、之间且靠近点的地方,,故选:.【点睛】此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.10、B【解析】【分析】将每项加上判断结果是否等于90°即可.【详解】解:①∵+=90°,故该项是的余角;②∵,∴,∴+=90°+,故该项不是的余角;③∵,∴+=90°,故该项是的余角;④∵,∴+=120°,故该项不是的余角;故选:B.【点睛】此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.二、填空题1、【解析】【分析】如图,钟面被等分成12份,每一份对应的角为先求解 根据时针每分钟转,再求解 从而可得答案.【详解】解:如图,时钟指向下午2:40时, 钟面被等分成12份,每一份对应的角为 时针每分钟转 故答案为:【点睛】本题考查的是钟面角的计算,角的和差关系,掌握“钟面被等分成12份,每一份对应的角为时针每分钟转”是解本题的关键.2、【解析】【分析】首先求得和∠EAC,然后根据即可求解.【详解】解:∵将三个形状、大小完全一样的正方形的一个顶点重合放置, ∠GAD=∠EAB=90°, ,,∴∴ 故答案为:【点睛】本题考查的是角的和差关系,角度的加法运算,掌握“角的和差关系与角度的加法运算”是解本题的关键.3、 北 东 45 1000【解析】【分析】图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.【详解】解:邮局在学校北偏东45°的方向上,距离学校 1000米.故答案为:北,东,45,1000.【点睛】此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.4、6【解析】【分析】根据为线段的中点,可得,即可求解.【详解】解:为线段的中点,,.故答案为:6【点睛】本题主要考查了有关中点的计算,熟练掌握把一条线段分成相等的两段的点,叫做这条线段的中点是解题的关键.5、56【解析】【分析】根据余角的定义即可求得.【详解】解:∠A的余角为90°−∠A=90°−34°=56°故答案为:56【点睛】本题考查了余角的定义,掌握余角的定义是关键,这是基础题.三、解答题1、 (1);(2)AE的长为4或8【解析】【分析】(1)根据AD=AC+CD,只要求出AC、CD即可解决问题;(2)先求出CE,再根据点E的位置分两种情况讨论即可解决问题.(1)解:∵AB=12,C是AB的中点,∴AC=BC=6,∵D是BC的中点,∴CD=BC=3,∴AD=AC+CD=9;(2)解:∵BC=6,CE=BC,∴CE=×6=2,当E在C的左边时,AE=AC﹣CE=6﹣2=4;当E在C的右边时,AE=AC+CE=6+2=8.∴AE的长为4或8.【点睛】本题考查的是线段中点的含义,线段的和差运算,掌握“线段的中点与线段的和差关系”是解本题的关键.2、 (1)145°,30°(2)(3)【解析】【分析】(1)根据求解即可;(2)(3)方法同(1)(1)解:∵,∴故答案为:;(2),理由如下,,(3),,【点睛】本题考查了三角尺中角度的计算,找到关系式是解题的关键.3、 (1)7(2)不改变,EF=7cm.【解析】【分析】(1)先求出线段BD,然后再利用线段中点的性质求出AE,BF即可;(2)利用线段中点的性质证明EF的长度不会发生改变.(1)解:∵AB=12cm,CD=2cm,AC=4cm,∴BD=AB-CD-AC=6(cm),∵E、F分别是AC、BD的中点,∴CE=AC=2(cm),DF=BD=3(cm),∴EF=CE+CD+DF=7(cm);故答案为:7;(2)不改变,理由:∵AB=12cm,CD=2cm,∴AC+BD=AB-CD=10(cm),∵E、F分别是AC、BD的中点,∴CE=AC,DF=BD,∴CE+DF=AC+BD=5(cm),∴EF=CE+CD+DF=7(cm) .【点睛】本题考查了两点间距离,熟练掌握线段上两点间距离的求法,灵活应用中点的性质解题是关键.4、 (1)∠AOC=40°,∠BOC=80°(2)40°(3)∠COD的度数为32°或176°【解析】【分析】(1)根据∠AOC:∠BOC=1:2,即可求解;(2)先求出∠COM,再求出∠CON,相加即可求解;(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.【小题1】解:∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=∠AOB=×120°=40°,∠BOC=∠AOB=×120°=80°;【小题2】∵OM平分∠AOC,∴∠COM=∠AOC=×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=∠BOC=×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;【小题3】如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴x+=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC-∠BOD=80°-48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴+y+120°=360°解得:y=96°,∴∠COD=∠BOD+∠BOC=96°+80°=176°,综上所述,∠COD的度数为32°或176°.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.5、 (1)(2)①;②【解析】【分析】(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,利用等角的余角性质得出∠AOC=∠AOD即可;(2)①存在,根据,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边在射线 上,∠EOB=∠BOC=,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.(1)解:∵OB平分∠COE,∴∠COB=∠EOB,∵∠AOB=90°,∴∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,∴∠AOC=∠AOD,故答案为:∠AOC=∠AOD;(2)解:①存在,∵,∴∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边在射线 上,∠EOB=∠BOC=,则15°t=30°,∴t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∴∠EOB=2∠EOC=120°>90°,∴当OC平分∠EOB时,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∴∠BOC=2∠EOC=120°>90°,当OE平分∠BOC时,∠BOC不是锐角舍去,综上,所有满足题意的t的取值为2,②如图∵∠COD=120°,当AB与OD相交时,∵∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,∴,故答案为:30°.【点睛】本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共26页。试卷主要包含了已知与满足,下列式子表示的角,下列说法中正确的是,已知,则∠A的补角等于等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共24页。试卷主要包含了如图,一副三角板,下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题,共27页。试卷主要包含了如图,一副三角板,下列说法中正确的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)