初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀课后作业题
展开六年级数学下册第五章基本平面图形必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,点C为线段AB的中点,点D在直线AB上,并且满足,若cm,则线段AB的长为( )
A.4cm B.36cm C.4cm或36cm D.4cm或2cm
2、如图,延长线段AB到点C,使,D是AC的中点,若,则BD的长为( )
A.2 B.2.5 C.3 D.3.5
3、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )
A.10cm B.2cm C.10或2cm D.无法确定
4、如图,OM平分,,,则( )
A.96° B.108° C.120° D.144°
5、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
6、已知,则∠A的补角等于( )
A. B. C. D.
7、上午8:30时,时针和分针所夹锐角的度数是( )
A.75° B.80° C.70° D.67.5°
8、如图,∠AOB,以OA为边作∠AOC,使∠BOC=∠AOB,则下列结论成立的是( )
A. B.
C.或 D.或
9、延长线段至点,分别取、的中点、.若,则的长度( )
A.等于 B.等于 C.等于 D.无法确定
10、若的补角是,则的余角是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知∠α=,则∠α的余角的度数是_____.
2、已知,则它的余角是______.
3、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.
4、一块手表上午6点45分,此时时针分针所夹锐角的大小为__________度.
5、钟表4点36分时,时针与分针所成的角为______度.
三、解答题(5小题,每小题10分,共计50分)
1、已知∠AOD=160°,OB为∠AOD内部的一条射线.
(1)如图1,若OM平分∠AOB,ON平分∠BOD,求∠MON的度数为 ;
(2)如图2,∠BOC在∠AOD内部(∠AOC>∠AOB),且∠BOC=20°,OF平分∠AOC,OG平分∠BOD(射线OG在射线OC左侧),求∠FOG的度数;
(3)在(2)的条件下,∠BOC绕点O运动过程中,若∠BOF=8°,求∠GOC的度数.
2、如图,已知线段a,b.(尺规作图,保留作图痕迹,不写作法)
求作:线段.
3、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.
(1)求∠AOC,∠BOC的度数;
(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;
(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.
4、点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:
(1)当a=﹣1,b=5时,求线段AB的“和谐点”所表示的数;
(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a的值.
5、如图1,在数轴上点A表示数a,点B表示数b,O为原点,AB表示点A和点B之间的距离,且a,b满足.
(1)若T为线段AB上靠近点B的三等分点,求线段OT的长度;
(2)如图2,若Q为线段AB上一点,C、D两点分别从Q、B出发以个单位/s,个单位/s的速度沿直线BA向左运动(C在线段AQ上,D在线段BQ上),运动的时间为ts.若C、D运动到任意时刻时,总有,请求出AQ的长;
(3)如图3,E、F为线段OB上的两点,且满足,,动点M从A点、动点N从F点同时出发,分别以3个单位/s,1个单位/s的速度沿直线AB向右运动,是否存在某个时刻使得成立?若存在,求此时MN的长度;若不存在,说明理由.
-参考答案-
一、单选题
1、C
【解析】
【分析】
分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.
【详解】
解:当点D在点B的右侧时,
∵,
∴AB=BD,
∵点C为线段AB的中点,
∴BC=,
∵,
∴,
∴BD=4,
∴AB=4cm;
当点D在点B的左侧时,
∵,
∴AD=,
∵点C为线段AB的中点,
∴AC=BC=,
∵,
∴-=6,
∴AB=36cm,
故选C.
【点睛】
本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.
2、C
【解析】
【分析】
由,,求出AC,根据D是AC的中点,求出AD,计算即可得到答案.
【详解】
解:∵,,
∴BC=12,
∴AC=AB+BC=18,
∵D是AC的中点,
∴,
∴BD=AD-AB=9-6=3,
故选:C.
【点睛】
此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.
3、C
【解析】
【分析】
分AC=AB+BC和AC=AB-BC,两种情况求解.
【详解】
∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,
当AC=AB+BC时,
AC=6+4=10;
当AC=AB-BC时,
AC=6-4=2;
∴AC的长为10或2cm
故选C.
【点睛】
本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.
4、B
【解析】
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
5、B
【解析】
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
6、C
【解析】
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
7、A
【解析】
【分析】
根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,
此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.
故选:A.
【点睛】
本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.
8、D
【解析】
【分析】
分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.
【详解】
解:当OC在∠AOB内部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=∠BOC;
当OC在∠AOB外部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=3∠BOC;
综上,∠AOC=∠BOC或∠AOC=3∠BOC;
故选:D.
【点睛】
本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.
9、B
【解析】
【分析】
由题意知,如图分两种情况讨论①②;用已知线段表示求解即可.
【详解】
解:由题意知
①如图1
∵,
∴;
②如图2
∵,
∴;
综上所述,
故选B.
【点睛】
本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.
10、B
【解析】
【分析】
直接利用一个角的余角和补角差值为90°,进而得出答案.
【详解】
解:∵∠α的补角等于130°,
∴∠α的余角等于:130°-90°=40°.
故选:B.
【点睛】
本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.
二、填空题
1、
【解析】
【分析】
根据90度减去即可求解.
【详解】
解:∠α=,则∠α的余角的度数是
故答案为:
【点睛】
本题考查了角度的计算,求一个角的余角,掌握角度的计算是解题的关键.
2、
【解析】
【分析】
根据余角的定义求即可.
【详解】
解:∵,
∴它的余角是90°-=,
故答案为:.
【点睛】
本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.
3、
【解析】
【分析】
根据90°-∠α即可求得的值.
【详解】
解:∵∠α与∠β互余,且∠α=35°30′,
∴∠β
故答案为:
【点睛】
本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键.
4、67.5
【解析】
【分析】
6点45分时,分针指向9,时针在指向6与7之间,则时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算2×30°+30°-0.5°×45即可.
【详解】
解:∵6点45分时,分针指向9,时针在指向6与7之间,
∴时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,即2×30°+30°-0.5°×45=67.5°.
故答案为:67.5.
【点睛】
本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.
5、78
【解析】
【分析】
因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助钟表,找出10时20分时针和分针之间相差的大格数,用大格数乘30°即可.
【详解】
解:因为时针在钟面上每分钟转360÷12÷60=0.5(度),分针每分钟转360÷60=6(度),
所以钟表上4时36分时,时针与分针的夹角可以看成:
时针转过4时0.5°×36=18°,分针转过7时6°×1=6°.
因为钟表12个数字,每相邻两个数字之间的夹角为30°,
所以4时36分时,分针与时针的小的夹角3×30°-18°+6°=78°.
故在14时36分,时针和分针的夹角为78°.
故答案为:78.
【点睛】
本题考查钟面角的相关计算;用到的知识点为:时针每分钟走0.5度;钟面上两个相邻数字之间相隔30°.
三、解答题
1、 (1)80°;
(2)70°
(3)42°或58°.
【解析】
【分析】
(1)根据角平分线的性质证得∠BOM=∠AOB,∠BON=∠BOD,即可得到答案;
(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分∠BOD,求出∠BOG=∠BOD=70°−x,即可求出∠FOG的度数;
(3)分两种情况:①当OF在OB右侧时,由∠BOC=20°,∠BOF=8°,求得∠COF的度数,利用OF平分∠AOC,得到∠AOC的度数,得到∠BOD的度数,根据OG平分∠BOD,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.
(1)
解:∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=∠AOB,∠BON=∠BOD,
∴∠MON=∠BOM+∠BON=∠AOB+∠BOD=∠AOD=80°;
故答案为:80°;
(2)
解:设∠BOF=x,
∵∠BOC=20°,
∴∠COF=20°+x,
∵OF平分∠AOC,
∴∠AOC=2∠COF=40°+2x,
∴∠COD=∠AOD-∠AOC=140°-2x,
∵OG平分∠BOD,
∴∠BOG=∠BOD=70°−x,
∴∠FOG=∠BOG+∠BOF=70°−x+x=70°;
(3)
解:当OF在OB右侧时,如图,
∵∠BOC=20°,∠BOF=8°,
∴∠COF=28°,
∵OF平分∠AOC,
∴∠AOC=2∠COF=56°,
∴∠COD=∠AOD-∠AOC=104°,
∴∠BOD=124°,
∵OG平分∠BOD,
∴∠BOG=∠BOD=62°,
∴∠GOC=∠BOG−∠BOC=62°−20°=42°.
当OF在OB左侧时,如图,
∵∠BOC=20°,∠BOF=8°,
∴∠COF=12°,
∵OF平分∠AOC,
∴∠AOC=2∠COF=24°,
∴∠COD=∠AOD-∠AOC=136°,
∴∠BOD=156°,
∵OG平分∠BOD,
∴∠BOG=∠BOD=78°,
∴∠GOC=∠BOG−∠BOC=78°−20°=58°.
∴∠GOC的度数为42°或58°.
【点睛】
此题考查了几何图形中角度的计算,角平分线的有关计算,正确掌握角平分线的定义及图形中各角度之间的位置关系进行计算是解题的关键.
2、见解析
【解析】
【分析】
作射线AM,在射线AM,上顺次截取AC=a,CD=a,再反向截取DB=b,进而可得线段AB.
【详解】
解:如图,线段AB即为所求作的线段.
【点睛】
本题考查尺规作图—线段的和差,是基础考点,掌握相关知识是解题关键.
3、 (1)∠AOC=40°,∠BOC=80°
(2)40°
(3)∠COD的度数为32°或176°
【解析】
【分析】
(1)根据∠AOC:∠BOC=1:2,即可求解;
(2)先求出∠COM,再求出∠CON,相加即可求解;
(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.
【小题1】
解:∵∠AOC:∠BOC=1:2,∠AOB=120°,
∴∠AOC=∠AOB=×120°=40°,
∠BOC=∠AOB=×120°=80°;
【小题2】
∵OM平分∠AOC,
∴∠COM=∠AOC=×40°=20°,
∵∠CON:∠BON=1:3,
∴∠CON=∠BOC=×80°=20°,
∴∠MON=∠COM+∠CON=20°+20°=40°;
【小题3】
如图,当OD在∠AOB内部时,
设∠BOD=x°,
∵2∠AOD=3∠BOD,
∴∠AOD=,
∵∠AOB=120°,
∴x+=120,
解得:x=48,
∴∠BOD=48°,
∴∠COD=∠BOC-∠BOD=80°-48°=32°,
如图,当OD在∠AOB外部时,
设∠BOD=y°,
∵2∠AOD=3∠BOD,
∴∠AOD=,
∵∠AOB=120°,
∴+y+120°=360°
解得:y=96°,
∴∠COD=∠BOD+∠BOC
=96°+80°
=176°,
综上所述,∠COD的度数为32°或176°.
【点睛】
本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.
4、 (1)3或11;
(2)a的值为-12,-9,-4,-3.
【解析】
【分析】
(1):设线段AB的“和谐点”表示的数为x,根据a=﹣1,b=5,分三种情况,①当时,
列出方程.②当时,列出方程.③当时,列出方程解方程即可.
(2):点O为AB的“和谐点”OA=2OB,列方程或,根据b=a+6且a<0,可得或解方程,当A为OB的“和谐点”当b<0时,AB=2AO,即6=-a,不合题意,当b>0时,AO=2AB,a=12>0,不合题意,当点B为AO的“和谐点”BA=2BO,点B在点O的左边,6=2(-a-6),点B在点O的右边,6=2(a+6),解方程即可.
(1)
解:设线段AB的“和谐点”表示的数为x,
①当时,
列出方程.
解得.(舍去)
②当时,
列出方程.
解得.
③当时,
列出方程
解得.
综上所述,线段AB的“和谐点”表示的数为3或11.
(2)
解:点O为AB的“和谐点”OA=2OB,
或,
∵b=a+6且a<0,
,
解得,
,
解得,
当A为OB的“和谐点”,
当b<0时,a<-6,AB=2AO,即6=-a,
解得a=-6,不合题意,
当b>0时,AO=2AB,即a=2×(b-a),
∵b=a+6,
解得a=12>0,不合题意,
当点B为AO的“和谐点”BA=2BO,
点B在点O的左边,6=2(-a-6),
解得:a=-9,
点B在点O的右边,6=2(a+6),
解得:a=-3,
综合a的值为-12,-9,-4,-3.
【点睛】
本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.
5、 (1)5
(2)5
(3)存在,9或0
【解析】
【分析】
(1)根据绝对值的非负性及偶次方的非负性求出a=-5,b=10,得到AB=10-(-5)=15,由T为线段AB上靠近点B的三等分点,得到BT=5,根据OT=OB-BT求出结果;
(2)由运动速度得到BD=2QC,由C、D运动到任意时刻时,总有,得到BQ=2AQ,即可求出AQ;
(3)先求出BF=4,EF=2,AE=9.当时,得到9-3m+4-m=9,当时,得到3m-9+4-m=9;当m>4时,得到3m-9+m-4=9,解方程即可.
(1)
解:∵,
∴a+5=0,b+2a=0,
∴a=-5,b=10,
∴点A表示数-5,点B表示数10,
∴AB=10-(-5)=15,
∵T为线段AB上靠近点B的三等分点,
∴BT=5,
∴OT=OB-BT=5;
(2)
解:∵C、D两点分别从Q、B出发以个单位/s,个单位/s的速度沿直线BA向左运动(C在线段AQ上,D在线段BQ上),
∴BD=2QC,
∵C、D运动到任意时刻时,总有,
∴BQ=2AQ,
∵BQ+AQ=15,
∴AQ=5;
(3)
解:∵,,
∴BF=4,EF=2,AE=9,
设点M运动ms,
当时,如图,
∵EM=9-3m,BN=4-m,,
∴9-3m+4-m=9,
解得m=1,
∴MN=9-3m+2+m=9;
当时,如图,
∵EM=3m-9,BN=4-m,,
∴3m-9+4-m=9,
解得m=7(舍去);
当m>4时,如图,
∵EM=3m-9,BN=m-4,,
∴3m-9+m-4=9,
解得m=;
∴MN=15-3m+m-4=0;
综上,存在,此时MN的长度为9或0.
【点睛】
此题考查数轴上两点之间的距离,绝对值的非负性及偶次方的非负性,数轴上动点问题,一元一次方程,正确掌握数轴上两点间的距离公式是解题的关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题,共28页。试卷主要包含了下列说法错误的是,如图,点在直线上,平分,,,则等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课堂检测: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课堂检测,共25页。试卷主要包含了下列说法等内容,欢迎下载使用。
数学六年级下册第五章 基本平面图形综合与测试同步训练题: 这是一份数学六年级下册第五章 基本平面图形综合与测试同步训练题,共22页。试卷主要包含了图中共有线段,已知,则∠A的补角等于等内容,欢迎下载使用。

