鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品精练
展开
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品精练,共24页。试卷主要包含了上午10,已知,则的补角的度数为,如图,一副三角板,若,则的补角的度数为等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向2、体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是( )A.两点确定一条直线 B.两点之间线段最短C.线段有两个端点 D.射线只有一个端点3、下列各角中,为锐角的是( )A.平角 B.周角 C.直角 D.周角4、上午10:00,钟面上时针与分针所成角的度数是( )A.30° B.45° C.60° D.75°5、如图,点O在CD上,OC平分∠AOB,若∠BOD=153°,则∠DOE的度数是( )A.27° B.33° C.28° D.63°6、已知,则的补角的度数为( )A. B. C. D.7、如图,一副三角板(直角顶点重合)摆放在桌面上,若,则等于( )A. B. C. D.8、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间,线段最短 B.两点确定一条直线C.过一点,有无数条直线 D.连接两点之间的线段叫做两点间的距离9、若,则的补角的度数为( )A. B. C. D.10、如图,线段,点在线段上,为的中点,且,则的长度( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,C,D,E为线段AB上三点,DE=AB=2,E是DB的中点,AC=CD,则CD的长为_________.2、如图,点、在直线上,点是直线外一点,可知,其依据是 _____.3、如图,在的内部有3条射线、、,若,,,则__________.4、如图,在平面内有A,B,C三点.请画直线AC,线段BC,射线AB,数数看,此时图中共有 个钝角.5、冬至是地球赤道以北地区白昼最短、黑夜最长的一天,在苏州有“冬至大如年”的说法.苏州冬至日正午太阳高度角是,的余角为__________.三、解答题(5小题,每小题10分,共计50分)1、已知∠AOB=90°,∠COD=80°,OE是∠AOC的角平分线.(1)如图1,若∠AOD=∠AOB,则∠DOE=________;(2)如图2,若OF是∠AOD的角平分线,求∠AOE−∠DOF的值;(3)在(1)的条件下,若射线OP从OE出发绕O点以每秒12°的速度逆时针旋转,射线OQ从OD出发绕O点以每秒8°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<)后得到∠COP=∠AOQ,求t的值.2、如图,已知线段AB(1)请按下列要求作图:①延长线段AB到C,使;②延长线段BA到D,使;(2)在(1)条件下,请直接回答线段BD与线段AC之间的数量关系;(3)在(1)条件下,如果AB=2cm,请求出线段BD和CD的长度.3、如图,已知平分平分.(1)求的度数.(2)求的度数.4、已知:点O是直线AB上一点,过点O分别画射线OC,OE,使得.(1)如图,OD平分.若,求的度数.请补全下面的解题过程(括号中填写推理的依据).解:∵点O是直线AB上一点,∴.∵,∴.∵OD平分.∴( ).∴ °.∵,∴( ).∵ ,∴ °.(2)在平面内有一点D,满足.探究:当时,是否存在的值,使得.若存在,请直接写出的值;若不存在,请说明理由.5、如图,∠AOB是平角,,,OM、ON外别是∠AOC、∠BOD的平分线,求∠MON的度数. -参考答案-一、单选题1、B【解析】【分析】根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.【详解】A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确; B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确; D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.故选B.【点睛】本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.2、A【解析】【分析】根据经过两点有一条直线,并且只有一条直线即可得出结论.【详解】解:∵让男生站成一条直线,他先让前两个男生站好不动,∴经过两点有一条直线,并且只有一条直线,∴这种做法的数学依据是两点确定一条直线.故选A.【点睛】本题考查直线公理,掌握直线公理是解题关键,同时也掌握线段公理,线段的特征,射线特征.3、B【解析】【分析】求出各个选项的角的度数,再判断即可.【详解】解:A. 平角=90°,不符合题意;B. 周角=72°,符合题意;C. 直角=135°,不符合题意;D. 周角=180°,不符合题意;故选:B.【点睛】本题考查了角的度量,解题关键是明确周角、平角、直角的度数.4、C【解析】【分析】钟面一周为360°,共分12大格,每格为360÷12=30°,10时整,时针在10,分针在12,相差2格,组成的角的度数就是30°×2=60°,【详解】10时整,时针与分针组成的角的度数是30°×2=60°.故选:C.【点睛】本题要在了解钟面结构的基础上进行解答.5、D【解析】【分析】先根据补角的定义求出∠BOC的度数,再利用角平分线定义即可求解.【详解】解:∵∠BOD=153°,∴∠BOC=180°-153°=27°,∵CD为∠AOB的角平分线,∴∠AOC=∠BOC=27°,∵∠AOE=90°,∴∠DOE=90°-∠AOC=63°故选:D.【点睛】本题考查了平角的定义,余角和补角,角平分线定义,求出∠BOC的度数是解题的关键.6、C【解析】【分析】两个角的和为 则这两个角互补,利用补角的含义直接列式计算即可.【详解】解: , 的补角 故选C【点睛】本题考查的是互为补角的含义,掌握“两个角的和为 则这两个角互补”是解本题的关键.7、A【解析】【分析】由三角板中直角三角尺的特征计算即可.【详解】∵和为直角三角尺∴,∴∴∴故选:A.【点睛】本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.8、A【解析】【分析】根据两点之间线段最短的性质解答.【详解】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选:A.【点睛】此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.9、C【解析】【分析】根据补角的性质,即可求解.【详解】解:∵,∴的补角的度数为.故选:C【点睛】本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.10、D【解析】【分析】设cm,则cm,根据题意列出方程求解即可.【详解】解:设,则,∵为的中点,∴,∴,解得,cm,故选:D.【点睛】本题考查了线段的和差和线段的中点,解一元一次方程,解题关键是明确相关定义,设未知数列出方程求解.二、填空题1、【解析】【分析】根据线段成比例求出,再根据中点的性质求出,即可得出,再根据线段成比例即可求出CD的长.【详解】解:DE=AB=2 E是DB的中点 AC=CD故答案为:.【点睛】此题考查了线段长度的问题,解题的关键是掌握线段成比例的性质以及中点的性质.2、两点之间,线段最短【解析】【分析】根据题意可知两点之间,线段和折线比较,线段最短【详解】解:点、在直线上,点是直线外一点,可知,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.3、13【解析】【分析】先用含∠BOE的代数式表示出∠AOB,进而表示出∠BOD,然后根据∠DOE=∠BOD-∠BOE即可得到结论.【详解】解:∵∠BOE=∠BOC,∴∠BOC=4∠BOE,∴∠AOB=∠AOC+∠BOC=52°+4∠BOE,∴∠BOD=∠AOB=+∠BOE,∴∠DOE=∠BOD-∠BOE=,故答案为:13.【点睛】本题考查了角的和差倍分计算,正确的识别图形是解题的关键.4、见详解,3【解析】【分析】直接根据直线、线段、射线的概念画出图形,再由角的概念解答即可.【详解】解:作图如下:由图可得,图中共有3个钝角,故答案为:3.【点睛】此题考查的是角的概念、直线、射线和线段,掌握有公共端点是两条射线组成的图形叫做角是解决此题关键.5、【解析】【分析】两个角的和为直角,则称这两个角互为余角,简称互余,根据余角的概念即可求得结果.【详解】故答案为:【点睛】本题主要考查了余角的计算,掌握余角的概念是关键.三、解答题1、 (1)25°(2)∠AOE-∠DOF=40°(3)t的值为秒或秒【解析】【分析】(1)由题意得∠AOD=30°,再求出∠AOE=55°,即可得出答案;(2)先由角平分线定义得∠AOF=∠DOF=∠AOD,∠AOE=∠AOC,再证∠AOE-∠AOF=∠COD,即可得出答案;(3)分三种情况:①当射线OP、OQ在∠AOC内部时,②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,③当射线OP、OQ在∠AOC外部时,由角的关系,列方程即可求解.(1)解:(1)∵∠AOB=90°,∴∠AOD=∠AOB=30°,∵∠COD=80°,∴∠AOC=∠AOD+∠COD=30°+80°=110°,∵OE平分∠AOC,∴∠AOE=∠COE=∠AOC=55°,∴∠DOE=∠AOE-∠AOD=55°-30°=25°;(2)解:∵OF平分∠AOD,∴∠AOF=∠DOF=∠AOD,∵OE平分∠AOC,∴∠AOE=∠AOC,∴∠AOE-∠AOF=∠AOC-∠AOD=(∠AOC-∠AOD)=∠COD,又∵∠COD=80°,∴∠AOE-∠DOF=×80°=40°;(3)解:分三种情况:①当射线OP、OQ在∠AOC内部时,即0<t≤时,由题意得:∠POE=(12t)°,∠DOQ=(8t)°,∴∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠AOD-∠DOQ=(30-8t)°,∵∠COP=∠AOQ,∴55-12t=(30-8t),解得:t=(舍去);②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,即<t≤时,则∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,∴55-12t=(8t-30),解得:t=;③当射线OP、OQ在∠AOC外部时,即<t<时,则∠COP=∠POE-∠COE=(12t-55)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,∴12t-55=(8t-30),解得:t=;综上所述,t的值为秒或秒.【点睛】本题考查了角的计算、角的和差、角平分线的定义等知识,正确的识别图形是解题的关键.2、 (1)①画图见解析;②画图见解析(2)BD=1.5AC;(3)cm,cm【解析】【分析】(1)①先延长 再作即可;②先延长 再作即可;(2)先证明 从而可得答案;(3)由 结合 从而可得答案.(1)解:如图所示,BC、AD即为所求; (2)解: (3)解:∵AB=2cm,∴AC=2AB=4cm,∴AD=4cm,∴BD=4+2=6cm,∴CD=2AD=8cm.【点睛】本题考查的是作一条线段等于已知线段,线段的和差运算,熟练的利用作图得到的已知信息求解未知信息是解本题的关键.3、 (1)60°(2)10°【解析】【分析】(1)根据角平分线的定义得∠AOC =2∠AOB,即可求解;(2)先求出∠COE的度数,再求出∠DOE的度数,最后根据∠COD=∠COE-∠DOE计算即可.(1)∠AOB =,OB平分∠AOC ∠AOC =2∠AOB=2=(2)∠AOE=,∠AOC =∠COE=∠AOE-∠AOC=-=又OD平分∠AOE∠DOE=∠AOE==70°∠COD=∠COE-∠DOE=-=【点睛】本题主要考查角平分线的定义,掌握角平分线把已知角分成两个相等的角是解题的关键.4、(1)角平分线的定义;70;垂直的定义;DOC;EOC;160;(2)存在,的值为120°或144°或【解析】【分析】(1)根据角平分线的定义和垂直定义,结合所给解题过程进行补充即可;(2)分三种情况讨论:①点D,C,E在AB上方时,②当点D在AB的下方,C,E在AB上方时,③如图,当D在AB上方,E,C在AB下方时,用含有α的式子表示出和∠BOE,由列式求解即可.【详解】解:(1)∵点O是直线AB上一点,∴.∵,∴.∵OD平分.∴( 角平分线的定义 ).∴ 70 °.∵,∴( 垂直的定义 ).∵ DOC EOC ,∴ 160 °.故答案为:角平分线定义;70;垂直的定义;DOC;EOC;160;(2)存在, 或144°或 ①点D,C,E在AB上方时,如图,∵, ∴ ∵∴ ∵∴ ∴②当点D在AB的下方,C,E在AB上方时,如图,∵ ∴ ∵ ∴ ∴ ∵ ∴∴ ③如图,当D在AB上方,E,C在AB下方时,同理可得: , 解得: 综上,的值为120°或144°或【点睛】本题主要考查角平分线和补角,熟练掌握角平分线的定义和补角的定义是解题的关键.5、【解析】【分析】根据角平分线的定义求出,再用平角减去即可得到结果.【详解】解:∵∠AOB是平角,∴ ∵OM、ON外别是∠AOC、∠BOD的平分线,且∠AOC=80°,∠BOD=30°,∴,,∴∠MON=∠AOB-∠AOM-∠BON=180°-40°-15°=125°.【点睛】本题主要考查了角的平分线的有关计算,性质、角的和差等知识点.解决本题亦可利用:∠MON=∠COD+∠COM+∠DON.
相关试卷
这是一份2021学年第五章 基本平面图形综合与测试随堂练习题,共23页。试卷主要包含了上午8等内容,欢迎下载使用。
这是一份数学第五章 基本平面图形综合与测试课时作业,共22页。试卷主要包含了已知线段AB,能解释等内容,欢迎下载使用。
这是一份数学六年级下册第五章 基本平面图形综合与测试课时练习,共26页。试卷主要包含了已知,则的补角的度数为,已知点C等内容,欢迎下载使用。