鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀随堂练习题
展开六年级数学下册第五章基本平面图形定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340° B.350° C.360° D.370°
2、已知,则的补角的度数为( )
A. B. C. D.
3、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )
A. B. C. D.
4、已知,点C为线段AB的中点,点D在直线AB上,并且满足,若cm,则线段AB的长为( )
A.4cm B.36cm C.4cm或36cm D.4cm或2cm
5、已知,则的补角等于( )
A. B. C. D.
6、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )
A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5
7、如图,将一块三角板60°角的顶点与另一块三角板的直角顶点重合,,的大小是( )
A. B. C. D.
8、为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法运用的数学知识是( )
A.两点确定一条直线 B.两点之间,线段最短
C.射线只有一个端点 D.过一点有无数条直线
9、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
10、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为( )
A.3 B.4 C.6 D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.
2、如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE=_____.(用含α的式子表示)
3、某人下午6点多钟外出购物,表上时针和分针的夹角恰好是110°,将近7点钟回到家,此时,表上时针和分针的夹角又恰好是110°,则此人外出购物所用时间是______分钟.
4、如图,已知点C为上一点,,D,E分别为,的中点,则的长为_________.
5、若一个角度数是115°6′,则这个角的补角是___________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知平面内有四个点A,B,C,D.
根据下列语句按要求画图.
(1)连接AB;作直线AD.
(2)作射线BC与直线AD交于点F.
观察图形发现,线段AF+BF>AB,得出这个结论的依据是: .
2、已知线段a、b(如图),用直尺和圆规在方框内按以下步骤作图:(保留作图痕迹,不要求写出作法和结论)
①画射线OP;
②在射线OP上顺次截取OA=a,AB=a;
③在线段OB上截取BC=b;
④作出线段OC的中点D.
(1)根据以上作图可知线段OC= ;(用含有a、b的式子表示)
(2)如果OD=2厘米,CD=2AC,那么线段BC= 厘米.
3、已知∠AOB=120°,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线.
(1)若OC平分∠AOB,
①依题意补全图1;
②∠MON的度数为 .
(2)当射线OC绕点O在∠AOB的内部旋转时,∠MON的度数是否改变?若不变,求∠MON的度数;若改变,说明理由.
4、如图,∠AOB是平角,,,OM、ON外别是∠AOC、∠BOD的平分线,求∠MON的度数.
5、已知,,,分别平分,.
(1)如图1,当,重合时, 度;
(2)若将的从图1的位置绕点顺时针旋转,旋转角,满足且.
①如图2,用等式表示与之间的数量关系,并说明理由;
②在旋转过程中,请用等式表示与之间的数量关系,并直接写出答案.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
2、C
【解析】
【分析】
两个角的和为 则这两个角互补,利用补角的含义直接列式计算即可.
【详解】
解: ,
的补角
故选C
【点睛】
本题考查的是互为补角的含义,掌握“两个角的和为 则这两个角互补”是解本题的关键.
3、B
【解析】
【分析】
先求出,再根据中点求出,即可求出的长.
【详解】
解:∵,
∴,,
∵点是线段的中点,
∴,
,
故选:B.
【点睛】
本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.
4、C
【解析】
【分析】
分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.
【详解】
解:当点D在点B的右侧时,
∵,
∴AB=BD,
∵点C为线段AB的中点,
∴BC=,
∵,
∴,
∴BD=4,
∴AB=4cm;
当点D在点B的左侧时,
∵,
∴AD=,
∵点C为线段AB的中点,
∴AC=BC=,
∵,
∴-=6,
∴AB=36cm,
故选C.
【点睛】
本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.
5、C
【解析】
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
6、C
【解析】
【分析】
根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可
【详解】
解:①如图,当在点的右侧时,
,
②如图,当在点的左侧时,
,
综上所述,线段的长度为6.5或1.5
故选C
【点睛】
本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.
7、B
【解析】
【分析】
根据∠BAC=60°,∠1=27°20′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.
【详解】
解:∵∠BAC=60°,∠1=27°20′,
∴∠EAC=32°40′,
∵∠EAD=90°,
∴∠2=90°-∠EAC=90°-32°40′=57°20′;
故选:B.
【点睛】
本题主要考查了与三角板有关的角度计算,解题的关键是能够正确求出∠EAC的度数.
8、A
【解析】
【分析】
两个学生看成点,根据两点确定一条直线的知识解释即可.
【详解】
∵两点确定一条直线,
∴选A.
【点睛】
本题考查了两点确定一条直线的原理,正确理解原理是解题的关键.
9、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
10、B
【解析】
【分析】
根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.
【详解】
解:E、F分别是线段AC、AB的中点,
AC=2AE=2CE,AB=2AF=2BF,
EF=AE﹣AF=2
2AE﹣2AF=AC﹣AB=2EF=4,
BC=AC﹣AB=4,
故选:B.
【点睛】
本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.
二、填空题
1、八
【解析】
【分析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.
【详解】
解:由题意得,n-2=6,
解得:n=8,
故答案为:八.
【点睛】
本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.
2、360°-4α
【解析】
【分析】
设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=3∠DOE,可得∠BOD=3x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.
【详解】
解:设∠DOE=x,
∵OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,
∴∠AOC=∠COD=α-x,∠BOD=3x,
由∠BOD+∠AOD=180°,
∴3x+2(α-x )=180°
解得x=180°-2α,
∴∠BOE=∠BOD-∠DOE=3x-x=2x=2(180°-2α)=360°-4α,
故答案为:360°-4α.
【点睛】
本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.
3、40
【解析】
【分析】
解设共用了x分,列方程6x-0.5x=110+110,求解即可.
【详解】
解:分针速度:6度/分,时针速度是:0.5度/分,
设共用了x分,
6x-0.5x=110+110,
解得x=40,
答:共外出40分钟,
故答案为:40.
【点睛】
此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.
4、3
【解析】
【分析】
根据AC=12cm,CB=AC,得到CB=6cm,求得AB=18cm,根据D、E分别为 AC、AB的中点,分别求得AE,AD的长,利用线段的差,即可解答.
【详解】
解:∵AC=12cm,CB=AC,
∴CB=6cm,
∴AB=AC+BC=12+6=18cm,
∵D、E分别为AC、AB的中点,
∴AE=AB=9cm,
AD=AC=6cm,
∴DE=AE﹣AD=3cm.
故答案为3.
【点睛】
本题考查了线段的中点和线段的和差,熟知各线段之间的和、差及倍数关系是解答此题的关键.
5、64°54'
【解析】
【分析】
根据补角的定义(若两个角之和为,则这两个角互为补角)进行求解即可得.
【详解】
解:,
故答案为:.
【点睛】
题目主要考查补角的定义,理解补角的定义是解题关键.
三、解答题
1、 (1)见解析;
(2)见解析,两点之间线段最短
【解析】
【分析】
(1)根据线段、直线的定义即可画出图形;
(2)根据射线的定义,可画出射线BC,再根据两点之间线段最短解决问题.
(1)
如图所示,线段AB与直线AD即为所求;
(2)
如上图所示,射线BC即为所求,
根据两点之间线段最短得AF+BF>AB,
故答案为:两点之间线段最短.
【点睛】
本题考查了画线段、直线、射线;两点之间线段最短,掌握线段、射线、直线的特点是解题的关键.
2、 (1)作图见解答,
(2)6
【解析】
【分析】
利用基本作图画出对应的几何图形,(1)根据线段的和差得到;(2)先利用点为的中点得到厘米,则厘米,然后利用进行计算.
(1)
解:如图,
;
故答案为:;
(2)
解:点为的中点,
厘米,
,
厘米,
(厘米);
故答案为:6.
【点睛】
本题考查了作图复杂作图,两点间的距离,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.
3、 (1)①见解析;②80°
(2)∠MON的度数不变,80°
【解析】
【分析】
(1)①根据题意补全图;②根据,∠MOC=∠AOC﹣∠AOM=40°,得出∠MON的度数;
(2)由OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线,得出∠MON=∠AOB﹣(∠AOM+∠BON)=AOB,从而得出答案.
(1)
解:①依题意补全图如下:
②∵OC平分∠AOB,∠AOB=120°,
∴,
∵射线OM是∠AOC靠近OA的三等分线,
∴,
∴∠MOC=∠AOC﹣∠AOM=40°,
同理可得∠CON=40°,
∴∠MON=∠CON+∠MOC=80°;
(2)
解:∠MON的度数不变.
∵OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线,
∵,,
∴∠MON=∠AOB﹣(∠AOM+∠BON)
=∠AOB﹣
=,
∵∠AOB=120°,
∴∠MON=80°.
【点睛】
本题考查了角的计算和角的三等分线,掌握各个角之间的关系是解题的关键.
4、
【解析】
【分析】
根据角平分线的定义求出,再用平角减去即可得到结果.
【详解】
解:∵∠AOB是平角,
∴
∵OM、ON外别是∠AOC、∠BOD的平分线,且∠AOC=80°,∠BOD=30°,
∴,,
∴∠MON=∠AOB-∠AOM-∠BON=180°-40°-15°=125°.
【点睛】
本题主要考查了角的平分线的有关计算,性质、角的和差等知识点.解决本题亦可利用:∠MON=∠COD+∠COM+∠DON.
5、 (1)
(2)①;②时,;时,
【解析】
【分析】
(1)由题意得出,,由角平分线定义得出,,即可得出答案;
(2)①由角平分线定义得出,,求出,即可得出答案;
②由①得,,
当时,求出,,即可得出答案;
当时,求出,,即可得出答案.
(1)
,重合,
,,
平分,平分,
,,
;
(2)
①;理由如下:
平分,平分,
,,
,
;
②由①得:,,
当时,如图2所示:
,
,
,
∴
当时,如图3所示:
,
,
;
∴
综上所述,时,;时,
【点睛】
本题考查了角的计算、角平分线定义等知识;弄清各个角之间的数量关系是解题的关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题,共25页。试卷主要包含了下列说法等内容,欢迎下载使用。
数学鲁教版 (五四制)第五章 基本平面图形综合与测试课堂检测: 这是一份数学鲁教版 (五四制)第五章 基本平面图形综合与测试课堂检测,共23页。试卷主要包含了已知,则的补角等于,如图,OM平分,,,则等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习,共24页。试卷主要包含了下列现象,如图,下列说法不正确的是,如图所示,点E,如图,OM平分,,,则等内容,欢迎下载使用。