![2022年必考点解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向测评试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734026/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向测评试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734026/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析鲁教版(五四制)六年级数学下册第五章基本平面图形定向测评试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734026/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共23页。
六年级数学下册第五章基本平面图形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的是( )A.两点之间直线最短 B.单项式πx2y的系数是C.倒数等于本身的数为±1 D.射线是直线的一半2、上午10:00,钟面上时针与分针所成角的度数是( )A.30° B.45° C.60° D.75°3、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有( )A.一对 B.二对 C.三对 D.四对4、为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法运用的数学知识是( )A.两点确定一条直线 B.两点之间,线段最短C.射线只有一个端点 D.过一点有无数条直线5、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个6、如图所示,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.图中共有三个角:∠AOB,∠AOC,∠BOCC.∠β+∠AOB=∠AOCD.∠AOC也可用∠O来表示7、如图,已知O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,若OC是的平分线,则下列结论正确的是( )A. B.C. D.8、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )A.105° B.125° C.135° D.145°9、如图,将一块三角板60°角的顶点与另一块三角板的直角顶点重合,,的大小是( )A. B. C. D.10、体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是( )A.两点确定一条直线 B.两点之间线段最短C.线段有两个端点 D.射线只有一个端点第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平面内不同的两点确定一条直线,不同的三点最多确定三条直线,则平面内不同的n个点最多可确定_____条直线(用含有n的代数式表示).2、比较大小:18.25°______18°25′(填“>”“<”或“=”)3、由郑州开往北京的某单次列车,运行途中要停靠四个站,那么要为这单次列车制作的火车票有______种.4、如图,点、在直线上,点是直线外一点,可知,其依据是 _____.5、已知的补角是,则的余角度数是______°.(结果用度表示)三、解答题(5小题,每小题10分,共计50分)1、如图是燕山前进片区的学校分布示意图,请你认真观察并回答问题.(1)燕山前进二小在燕山前进中学的 方向,距离大约是 m.(2)燕化附中在燕山向阳小学的 方向.(3)小辰从燕山向阳小学出发,沿正东方向走200m,右转进入岗南路,沿岗南路向南走150m,左转进入迎风南路,沿迎风南路向正东方向走450m到达燕化附中.请在图中画出小辰行走的路线,并标出岗南路和迎风南路的位置.2、已知∠AOB=90°,∠COD=80°,OE是∠AOC的角平分线.(1)如图1,若∠AOD=∠AOB,则∠DOE=________;(2)如图2,若OF是∠AOD的角平分线,求∠AOE−∠DOF的值;(3)在(1)的条件下,若射线OP从OE出发绕O点以每秒12°的速度逆时针旋转,射线OQ从OD出发绕O点以每秒8°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<)后得到∠COP=∠AOQ,求t的值.3、如图,平面上有四个点A,B,C,D.(1)依照下列语句画图:①直线AB,CD相交于点E;②在线段BC的延长线上取一点F,使CF=DC.(2)在四边形ABCD内找一点O,使它到四边形四个顶点的距离的和OA+OB+OC+OD最小,并说出你的理由.4、如图,已知平面内有四个点A,B,C,D.根据下列语句按要求画图.(1)连接AB;作直线AD.(2)作射线BC与直线AD交于点F.观察图形发现,线段AF+BF>AB,得出这个结论的依据是: .5、如图,已知A、B、C、D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.(1)画射线;(2)画直线;(3)在直线上找一点P,使得最小. -参考答案-一、单选题1、C【解析】【分析】分别对每个选项进行判断:两点之间线段最短;单项式单项式πx2y的系数是;倒数等于本身的数为±1;射线是是直线的一部分.【详解】解:A.两点之间线段最短,故不符合题意;B.单项式πx2y的系数是,不符合题意;C.倒数等于本身的数为±1,故符合题意;D.射线是是直线的一部分,故不符合题意;故选:C.【点睛】本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.2、C【解析】【分析】钟面一周为360°,共分12大格,每格为360÷12=30°,10时整,时针在10,分针在12,相差2格,组成的角的度数就是30°×2=60°,【详解】10时整,时针与分针组成的角的度数是30°×2=60°.故选:C.【点睛】本题要在了解钟面结构的基础上进行解答.3、C【解析】【分析】根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.【详解】解:∵∠BOC=90°,∠COD=45°,∴∠AOC=90°,∠BOD=45°,∠AOD=135°,∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,∴图中互为补角的角共有3对,故选:C.【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.4、A【解析】【分析】两个学生看成点,根据两点确定一条直线的知识解释即可.【详解】∵两点确定一条直线,∴选A.【点睛】本题考查了两点确定一条直线的原理,正确理解原理是解题的关键.5、A【解析】【分析】根据直线、线段、射线的区别逐项分析判断即可【详解】解:①图中只有直线BD,1条直线,原说法错误;②图中共有2×3+1×2=8条射线,原说法错误;③图中共有6条线段,即线段,原说法是正确的;④图中射线BC与射线CD不是同一条射线,原说法错误.故正确的有③,共计1个故选:A.【点睛】本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.6、D【解析】【分析】根据角的表示方法表示各个角,再判断即可.【详解】解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.【点睛】本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.7、B【解析】【分析】先求解利用角平分线的定义再求解从而可得答案.【详解】解: 平分 故选B【点睛】本题考查的是角的和差运算,角平分线的定义,熟练的运用角的和差关系探究角与角之间的关系是解本题的关键.8、B【解析】【分析】由题意知计算求解即可.【详解】解:由题意知故答案为:B.【点睛】本题考查了方位角的计算.解题的关键在于正确的计算.9、B【解析】【分析】根据∠BAC=60°,∠1=27°20′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.【详解】解:∵∠BAC=60°,∠1=27°20′,∴∠EAC=32°40′,∵∠EAD=90°,∴∠2=90°-∠EAC=90°-32°40′=57°20′;故选:B.【点睛】本题主要考查了与三角板有关的角度计算,解题的关键是能够正确求出∠EAC的度数.10、A【解析】【分析】根据经过两点有一条直线,并且只有一条直线即可得出结论.【详解】解:∵让男生站成一条直线,他先让前两个男生站好不动,∴经过两点有一条直线,并且只有一条直线,∴这种做法的数学依据是两点确定一条直线.故选A.【点睛】本题考查直线公理,掌握直线公理是解题关键,同时也掌握线段公理,线段的特征,射线特征.二、填空题1、【解析】【分析】平根据面内不同的两点确定一条直线,不同的三点最多确定三条直线…依此类推找出规律.【详解】解:平面内不同的2个点确定1条直线, 3个点最多确定3条,即3=1+2;4个点确定最多1+2+3=6条直线; 则n个点最多确定1+2+3+……(n-1)=条直线,故答案为.【点睛】此题主要考查了两点确定一条直线,解决问题的关键是通过观察、分析、归纳、验证,然后得出一般性的结论,再代入求值.2、<【解析】【分析】先把化为 从而可得答案.【详解】解: 而 故答案为:<【点睛】本题考查的是角度的大小比较,角的单位换算,掌握“角的60进位制以及大化小用乘法”是解本题的关键.3、15【解析】【分析】郑州到北京中间停靠四站,共有5种车票;第一站到北京共有4种车票;第二站到北京共有3种车票;第三站到北京共有2种车票;第四站到北京共有1种车票;郑州到北京方向火车票共有5+4+3+2+1=15种.【详解】解:如图由题意知:共有种故答案为:15.【点睛】本题考查了线段.解题的关键是要考虑每个停靠站都发售火车票.4、两点之间,线段最短【解析】【分析】根据题意可知两点之间,线段和折线比较,线段最短【详解】解:点、在直线上,点是直线外一点,可知,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.5、【解析】【分析】根据180°-求得,根据即可求得答案【详解】解:∵的补角是,∴的余角为故答案为:【点睛】本题考查了求一个角的补角和余角,角度进制转换,正确的计算是解题的关键.三、解答题1、 (1)正西,100(2)南偏东77°(3)见解析【解析】【分析】(1)根据图中位置解决问题即可.(2)根据图中位置解决问题即可.(3)根据题意画出路线即可.(1)燕山前进二小在燕山前进中学的正西方向,距离大约是.故答案为:正西,100.(2)燕化附中在燕山向阳小学的南偏东方向故答案为:南偏东.(3)小辰行走的路线如图:【点睛】本题考查作图应用与设计,方向角等知识,解题的关键是熟练掌握基本知识.2、 (1)25°(2)∠AOE-∠DOF=40°(3)t的值为秒或秒【解析】【分析】(1)由题意得∠AOD=30°,再求出∠AOE=55°,即可得出答案;(2)先由角平分线定义得∠AOF=∠DOF=∠AOD,∠AOE=∠AOC,再证∠AOE-∠AOF=∠COD,即可得出答案;(3)分三种情况:①当射线OP、OQ在∠AOC内部时,②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,③当射线OP、OQ在∠AOC外部时,由角的关系,列方程即可求解.(1)解:(1)∵∠AOB=90°,∴∠AOD=∠AOB=30°,∵∠COD=80°,∴∠AOC=∠AOD+∠COD=30°+80°=110°,∵OE平分∠AOC,∴∠AOE=∠COE=∠AOC=55°,∴∠DOE=∠AOE-∠AOD=55°-30°=25°;(2)解:∵OF平分∠AOD,∴∠AOF=∠DOF=∠AOD,∵OE平分∠AOC,∴∠AOE=∠AOC,∴∠AOE-∠AOF=∠AOC-∠AOD=(∠AOC-∠AOD)=∠COD,又∵∠COD=80°,∴∠AOE-∠DOF=×80°=40°;(3)解:分三种情况:①当射线OP、OQ在∠AOC内部时,即0<t≤时,由题意得:∠POE=(12t)°,∠DOQ=(8t)°,∴∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠AOD-∠DOQ=(30-8t)°,∵∠COP=∠AOQ,∴55-12t=(30-8t),解得:t=(舍去);②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,即<t≤时,则∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,∴55-12t=(8t-30),解得:t=;③当射线OP、OQ在∠AOC外部时,即<t<时,则∠COP=∠POE-∠COE=(12t-55)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,∴12t-55=(8t-30),解得:t=;综上所述,t的值为秒或秒.【点睛】本题考查了角的计算、角的和差、角平分线的定义等知识,正确的识别图形是解题的关键.3、 (1)①作图见详解;②作图见详解(2)作图见详解;理由见详解【解析】(1)① 解:如图所示E即为所求做点,② 如图所示,F点即为所求做点,(2)解:如图连接线段AC,线段BD,两线段交于点O,此时OA+OB+OC+OD最小,理由如下:要求OA+OB+OC+OD,就是求(OA +OC)+(OB +OD)最小,也就是求OA +OC最小,OB +OD最小,当O,A,C,三点在同一直线上时OA +OC最小,当O,B,D,三点在同一直线上时OB +OD最小,故直接连接线段AC,线段BD所交得点为所求作的点.【点睛】本题考查尺规作图,以及直线,线段,射线的定义等知识,能够理解直线,射线,线段的定义是关键.4、 (1)见解析;(2)见解析,两点之间线段最短【解析】【分析】(1)根据线段、直线的定义即可画出图形;(2)根据射线的定义,可画出射线BC,再根据两点之间线段最短解决问题.(1)如图所示,线段AB与直线AD即为所求;(2)如上图所示,射线BC即为所求,根据两点之间线段最短得AF+BF>AB,故答案为:两点之间线段最短.【点睛】本题考查了画线段、直线、射线;两点之间线段最短,掌握线段、射线、直线的特点是解题的关键.5、 (1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】【分析】(1)根据射线的定义连接BA并延长即可求解;(2)根据直线的定义连接AC并向两端延长即可求解;(3)连接AC和BD,根据两点之间线段最短可得AC与BD的交点即为点P.(1)解:如图所示,连接BA并延长即为要求作的射线BA,(2)解:连接AC并向两端延长即为要求作的直线AC,(3)解:如图所示,连接AC和BD,∵两点之间线段最短,∴当点P,B,D在一条直线上时,最小,∴线段AC与BD的交点即为要求作的点P.【点睛】本题主要是考查了几何作图能力以及两点之间线段最短和直线的概念,熟练掌握画图技巧,是解决作图题的关键.
相关试卷
这是一份初中鲁教版 (五四制)第五章 基本平面图形综合与测试练习,共23页。试卷主要包含了如图,点在直线上,平分,,,则,下列两个生活,已知线段AB等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题,共27页。试卷主要包含了如图,一副三角板,下列说法中正确的是等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题,共27页。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)