![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形专项测试试题(含答案及详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12733928/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形专项测试试题(含答案及详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12733928/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形专项测试试题(含答案及详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12733928/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第五章 基本平面图形综合与测试优秀巩固练习
展开这是一份2021学年第五章 基本平面图形综合与测试优秀巩固练习,共22页。试卷主要包含了下列说法错误的是,图中共有线段等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个角的度数为54°12',则这个角的补角度数等于( )
A.125°48' B.125°88' C.135°48' D.136°48'
2、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )
A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5
3、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )
A. B. C. D.
4、把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是( )
A.两点确定一条直线 B.两点之间,线段最短
C.两点之间,直线最短 D.线段比直线短
5、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点,若,,那么的度数为( )
A. B. C. D.
6、如图,点A,B在线段EF上,点M,N分别是线段EA,BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长为( )cm
A.10 B.11 C.12 D.13
7、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
8、已知∠α=125°19′,则∠α的补角等于( )
A.144°41′ B.144°81′ C.54°41′ D.54°81′
9、图中共有线段( )
A.3条 B.4条 C.5条 D.6条
10、已知,则∠A的补角等于( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下列结论:①多项式的次数为3;②若,则OP平分∠AOB;③满足的整数x的值有5个;④若,则关于x的一元一次方程的解为.其中正确的结论是___(填序号).
2、一个角比它的补角的3倍多40°,则这个角的度数为______.
3、如图,点B是线段AC上一点,且AB=15cm,,点O是线段AC的中点,则线段OB=______.
4、45°30'=_____°.
5、如图,将三个形状、大小完全一样的正方形的一个顶点重合放置,若,,则_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知平分平分.
(1)求的度数.
(2)求的度数.
2、已知:如图1,是定长线段上一定点,两点分别从,出发以,的速度沿向左运动,运动方向如箭头所示(在线段上,在线段上)
(1)若,当点运动了,求的值;
(2)若点运动时,总有,试说明;
(3)如图2,已知,是线段所在直线上一点,且,求的值.
3、如图,将两块三角板的直角顶点重合.
(1)写出以C为顶点相等的角;
(2)若∠ACB=150°,求∠DCE的度数.
4、点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:
(1)当a=﹣1,b=5时,求线段AB的“和谐点”所表示的数;
(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a的值.
5、如图,线段AB=12,点C是线段AB的中点,点D是线段BC的中点.
(1)求线段AD的长;
(2)若在线段AB上有一点E,,求AE的长.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由计算求解即可.
【详解】
解:∵
∴这个角的补角度数为
故选A.
【点睛】
本题考查了补角.解题的关键在于明确.
2、C
【解析】
【分析】
根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可
【详解】
解:①如图,当在点的右侧时,
,
②如图,当在点的左侧时,
,
综上所述,线段的长度为6.5或1.5
故选C
【点睛】
本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.
3、A
【解析】
【分析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:9:30时针与分针相距3.5份,每份的度数是30°,
在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.
故选:A.
【点睛】
本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.
4、B
【解析】
【分析】
由把弯曲的河道改直,就缩短了河道的长度,涉及的知识点与距离相关,从而可以两点之间,线段最短来解析.
【详解】
解:把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是
两点之间,线段最短.
故选:B
【点睛】
本题考查的是两点之间,线段最短,掌握“利用两点之间线段最短解析生活现象”是解本题的关键.
5、B
【解析】
【分析】
根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.
【详解】
解:∵∠ABE=45°,
∴∠CBE=45°,
∴∠CBG=45°,
∵∠GBH=30°,
∴∠FBG=60°,
∴∠FBC=∠FBG-∠CBG=60°-45°=15°.
故选B.
【点睛】
此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.
6、C
【解析】
【分析】
由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.
【详解】
解:∵EA:AB:BF=1:2:3,
可以设EA=x,AB=2x,BF=3x,
而M、N分别为EA、BF的中点,
∴MA=EA=x,NB=BFx,
∴MN=MA+AB+BN=x+2x+x=4x,
∵MN=16cm,
∴4x=8,
∴x=2,
∴EF=EA+AB+BF=6x=12,
∴EF的长为12cm,
故选C.
【点睛】
本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
7、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
8、C
【解析】
【分析】
两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.
【详解】
解: ∠α=125°19′,
∠α的补角等于
故选C
【点睛】
本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.
9、D
【解析】
【分析】
分别以为端点数线段,从而可得答案.
【详解】
解:图中线段有:
共6条,
故选D
【点睛】
本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.
10、C
【解析】
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
二、填空题
1、①③④
【解析】
【分析】
根据多项式的次数的含义可判断A,根据角平分线的定义可判断B,根据绝对值的含义与数轴上两点之间的距离可判断C,由一元一次方程的定义与一元一次方程的解法可判断D,从而可得答案.
【详解】
解:多项式的次数为3,故①符合题意;
如图,,但OP不平分∠AOB;
故②不符合题意,
如图,
当时,
满足的整数x的值有,有5个;故③符合题意;
,
为关于x的一元一次方程,则
,故④符合题意;
综上:符合题意的有①③④
故答案为:①③④
【点睛】
本题考查的是多项式的次数,角平分线的定义,绝对值的含义,数轴上两点之间的距离,一元一次方程的定义及解一元一次方程,掌握以上基础知识是解本题的关键.
2、##145度
【解析】
【分析】
设这个角的补角的度数为 ,则这个角的度数为 ,根据“一个角比它的补角的3倍多40°,”列出方程,即可求解.
【详解】
解:设这个角的补角的度数为 ,则这个角的度数为 ,根据题意得:
,
解得: ,
∴这个角的度数为.
故答案为:
【点睛】
本题主要考查了补角的性质,一元一次方程的应用,利用方程思想解答是解题的关键.
3、5cm
【解析】
【分析】
先求出AC,再由中点定义求出CO即可得到OB.
【详解】
解:∵AB=15cm,,
∴AC=AB+BC=15+5=20(cm);
∵点O是线段AC的中点,
∴CO=AC=×20=10(cm),
∴OB=CO﹣BC=10﹣5=5(cm).
故答案为:5cm.
【点睛】
此题考查了线段的和与差计算,正确掌握线段中点的定义及各线段之间的位置关系是解题的关键.
4、45.5
【解析】
【分析】
先将化为度数,然后与整数部分的度数相加即可得.
【详解】
解:
.
故答案为:.
【点睛】
题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.
5、
【解析】
【分析】
首先求得和∠EAC,然后根据即可求解.
【详解】
解:∵将三个形状、大小完全一样的正方形的一个顶点重合放置,
∠GAD=∠EAB=90°,
,,
∴
∴
故答案为:
【点睛】
本题考查的是角的和差关系,角度的加法运算,掌握“角的和差关系与角度的加法运算”是解本题的关键.
三、解答题
1、 (1)60°
(2)10°
【解析】
【分析】
(1)根据角平分线的定义得∠AOC =2∠AOB,即可求解;
(2)先求出∠COE的度数,再求出∠DOE的度数,最后根据∠COD=∠COE-∠DOE计算即可.
(1)
∠AOB =,OB平分∠AOC
∠AOC =2∠AOB=2=
(2)
∠AOE=,∠AOC =
∠COE=∠AOE-∠AOC=-=
又OD平分∠AOE
∠DOE=∠AOE==70°
∠COD=∠COE-∠DOE=-=
【点睛】
本题主要考查角平分线的定义,掌握角平分线把已知角分成两个相等的角是解题的关键.
2、 (1)2cm
(2)见解析
(3)或
【解析】
【分析】
(1)根据运动的时间为2s,结合图形可得出,,即可得出,再由,即得出AC+MD的值;
(2)根据题意可得出,.再由,可求出,从而可求出,即证明;
(3)①分类讨论当点在线段上时、②当点在线段的延长线上时和③当点在线段的延长线上时,根据线段的和与差结合,即可求出线段MN和AB的等量关系,从而可求出的值,注意舍去不合题意的情形.
(1)
∵时间时,
,,
∴
;
(2)
∵,,
又∵,
∴,
∴,
∴,
∴;
(3)
①如图,当点在线段上时,
∵,
∴,
∴,
∴;
②如图,当点在线段的延长线上时,
∵,
∴,
∴,
③如图,当点在线段的延长线上时,
,这种情况不可能,
综上可知,的值为或.
【点睛】
本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.
3、 (1)∠ACE=∠BCD,∠ACD=∠ECB
(2)30°
【解析】
【分析】
(1)根据余角的性质即可得到结论;
(2)根据角的和差即可得到结论.
(1)
∵∠ACD=∠BCE=90°,
∴∠ACE+∠DCE=∠BCD+∠DCE=90°,
∴∠ACE=∠BCD;∠ACD=∠ECB=90°
(2)
∵∠ACB=150°,∠BCE=90°,
∴∠ACE=150°-90°=60°.
∴∠DCE=90°-∠ACE=90°-60°=30°
【点睛】
本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.
4、 (1)3或11;
(2)a的值为-12,-9,-4,-3.
【解析】
【分析】
(1):设线段AB的“和谐点”表示的数为x,根据a=﹣1,b=5,分三种情况,①当时,
列出方程.②当时,列出方程.③当时,列出方程解方程即可.
(2):点O为AB的“和谐点”OA=2OB,列方程或,根据b=a+6且a<0,可得或解方程,当A为OB的“和谐点”当b<0时,AB=2AO,即6=-a,不合题意,当b>0时,AO=2AB,a=12>0,不合题意,当点B为AO的“和谐点”BA=2BO,点B在点O的左边,6=2(-a-6),点B在点O的右边,6=2(a+6),解方程即可.
(1)
解:设线段AB的“和谐点”表示的数为x,
①当时,
列出方程.
解得.(舍去)
②当时,
列出方程.
解得.
③当时,
列出方程
解得.
综上所述,线段AB的“和谐点”表示的数为3或11.
(2)
解:点O为AB的“和谐点”OA=2OB,
或,
∵b=a+6且a<0,
,
解得,
,
解得,
当A为OB的“和谐点”,
当b<0时,a<-6,AB=2AO,即6=-a,
解得a=-6,不合题意,
当b>0时,AO=2AB,即a=2×(b-a),
∵b=a+6,
解得a=12>0,不合题意,
当点B为AO的“和谐点”BA=2BO,
点B在点O的左边,6=2(-a-6),
解得:a=-9,
点B在点O的右边,6=2(a+6),
解得:a=-3,
综合a的值为-12,-9,-4,-3.
【点睛】
本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.
5、 (1);
(2)AE的长为4或8
【解析】
【分析】
(1)根据AD=AC+CD,只要求出AC、CD即可解决问题;
(2)先求出CE,再根据点E的位置分两种情况讨论即可解决问题.
(1)
解:∵AB=12,C是AB的中点,
∴AC=BC=6,
∵D是BC的中点,
∴CD=BC=3,
∴AD=AC+CD=9;
(2)
解:∵BC=6,CE=BC,
∴CE=×6=2,
当E在C的左边时,AE=AC﹣CE=6﹣2=4;
当E在C的右边时,AE=AC+CE=6+2=8.
∴AE的长为4或8.
【点睛】
本题考查的是线段中点的含义,线段的和差运算,掌握“线段的中点与线段的和差关系”是解本题的关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题,共21页。试卷主要包含了下列说法中正确的是,下列现象,下列两个生活等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题,共24页。试卷主要包含了在一幅七巧板中,有我们学过的,下列说法错误的是,若,则的补角的度数为,能解释,如图,下列说法不正确的是等内容,欢迎下载使用。
这是一份数学六年级下册第五章 基本平面图形综合与测试精练,共24页。试卷主要包含了下列说法正确的是,如图,点在直线上,平分,,,则等内容,欢迎下载使用。