![精品试卷鲁教版(五四制)六年级数学下册第五章基本平面图形重点解析试题(含答案及详细解析)01](http://img-preview.51jiaoxi.com/2/3/12733933/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷鲁教版(五四制)六年级数学下册第五章基本平面图形重点解析试题(含答案及详细解析)02](http://img-preview.51jiaoxi.com/2/3/12733933/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷鲁教版(五四制)六年级数学下册第五章基本平面图形重点解析试题(含答案及详细解析)03](http://img-preview.51jiaoxi.com/2/3/12733933/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品同步测试题
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( )
①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.
A.①②B.①④C.②③D.③④
2、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,线段最短;③和38.15°相等;④画直线AB=3cm;⑤已知三条射线OA,OB,OC,若,则射线OC是∠AOB的平分线.其中正确说法的个数为( )
A.1个B.2个C.3个D.4个
3、一个角的度数为54°12',则这个角的补角度数等于( )
A.125°48'B.125°88'C.135°48'D.136°48'
4、已知,则∠A的补角等于( )
A.B.C.D.
5、下列说法正确的是( )
A.正数与负数互为相反数B.如果x2=y2,那么x=y
C.过两点有且只有一条直线D.射线比直线小一半
6、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340°B.350°C.360°D.370°
7、已知∠α=125°19′,则∠α的补角等于( )
A.144°41′B.144°81′C.54°41′D.54°81′
8、上午10:00,钟面上时针与分针所成角的度数是( )
A.30°B.45°C.60°D.75°
9、下列说法中正确的是( )
A.两点之间所有的连线中,直线最短B.射线AB和射线BA是同一条射线
C.一个角的余角一定比这个角大D.一个锐角的补角比这个角的余角大90°
10、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )
A.5B.6C.7D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果∠A=34°,那么∠A的余角的度数为_____°.
2、平面内,,C为内部一点,射线平分,射找平分,射线平分,当时,的度数是____________.
3、已知的补角是,则的余角度数是______°.(结果用度表示)
4、=_____度,90°﹣=___° __.
5、已知A、B、C三点在同一直线上,AB=21,BC=9,点E、F分别为线段AB、BC的中点,那么EF等于___.
三、解答题(5小题,每小题10分,共计50分)
1、在数轴上,点A表示的数为1,点B表示的数为3.对于数轴上的图形M,给出如下定义:P为图形M上任意一点,Q为线段AB上任意一点,如果线段PQ的长度有最小值,那么称这个最小值为图形M关于线段AB的极小距离,记作d1(M,线段AB);如果线段PQ的长度有最大值,那么称这个最大值为图形M关于线段AB的极大距离,记作d2(M,线段AB).例如:点K表示的数为4,则d1(点K,线段AB)=1,d2(点K,线段AB)=3.
已知点O为数轴原点,点C,D为数轴上的动点.
(1)d1(点O,线段AB)= ,d2(点O,线段AB)= ;
(2)若点C,D表示的数分别为m,m+2,d1(线段CD,线段AB)=2.求m的值;
(3)点C从原点出发,以每秒2个单位长度沿x轴正方向匀速运动;点D从表示数﹣2的点出发,第1秒以每秒2个单位长度沿x轴正方向匀速运动,第2秒以每秒4个单位长度沿x轴负方向匀速运动,第3秒以每秒6个单位长度沿x轴正方向匀速运动,第4秒以每秒8个单位长度沿x轴负方向匀速运动,…,按此规律运动,C,D两点同时出发,设运动的时间为t秒,若d2(线段CD,线段AB)小于或等于6,直接写出t的取值范围.(t可以等于0)
2、如图,两条直线AB,CD相交于点O,且∠AOC=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s.两条射线OM,ON同时运动,运动时间为t秒.(本题出现的角均小于平角)
(1)当t=2时,∠MON=_______,∠AON=_______;
(2)当0<t<12时,若∠AOM=3∠AON=60°.试求出t的值;
(3)当0<t<6时,探究的值,问:t满足怎样的条件是定值;满足怎样的条件不是定值?
3、如图,已知平面上三个点A,B,C,按要求完成下列作图(不写作法,只保留作图痕迹):
(1)作直线AC,射线BA;
(2)连接BC.并延长BC至点D,使CD=BC.
4、按要求作答:如图,已知四点A、B、C、D,请仅用直尺和圆规作图,保留画图痕迹.
(1)①画直线AB;
②画射线BC;
③连接AD并延长到点E,在射线AE上截取AF,使AF=AB+BC;
(2)在直线BD上确定一点P,使PA+PC的值最小,并写出画图的依据 .
5、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.
(1)求∠AOC,∠BOC的度数;
(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;
(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
直接利用直线的性质以及线段的性质分析求解即可.
【详解】
①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;
②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;
③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;
④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释;
综上可得:①④可以用“两点确定一条直线”来解释,
故选:B.
【点睛】
此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键.
2、A
【解析】
【分析】
根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.
【详解】
解:①射线AB和射线BA表示不是同一条射线,故此说法错误;
②两点之间,线段最短,故此说法正确;
③38°15'≠38.15°,故此说法错误;
④直线不能度量,所以“画直线AB=3cm”说法是错误的;
⑤已知三条射线OA,OB,OC,若,则OC不一定在∠AOB的内部,故此选项错误;
综上所述,正确的是②,
故选:A.
【点睛】
本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.
3、A
【解析】
【分析】
由计算求解即可.
【详解】
解:∵
∴这个角的补角度数为
故选A.
【点睛】
本题考查了补角.解题的关键在于明确.
4、C
【解析】
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
5、C
【解析】
【分析】
A中互为相反数的两个数为一正一负;B中两个数的平方相等,这两个数可以相等也可以互为相反数;C中过两点有且只有一条直线;D中射线与直线无法比较长度.
【详解】
解:A中正数负数分别为,,错误,不符合要求;
B中,可得或,错误,不符合要求;
C中过两点有且只有一条直线 ,正确,符合要求;
D中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;
故选C.
【点睛】
本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.
6、B
【解析】
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
7、C
【解析】
【分析】
两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.
【详解】
解: ∠α=125°19′,
∠α的补角等于
故选C
【点睛】
本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.
8、C
【解析】
【分析】
钟面一周为360°,共分12大格,每格为360÷12=30°,10时整,时针在10,分针在12,相差2格,组成的角的度数就是30°×2=60°,
【详解】
10时整,时针与分针组成的角的度数是30°×2=60°.
故选:C.
【点睛】
本题要在了解钟面结构的基础上进行解答.
9、D
【解析】
【分析】
分别根据线段的性质、射线、余角、补角等定义一一判断即可.
【详解】
解:A.两点之间所有的连线中,线段最短,故此选项错误;
B.射线AB和射线BA不是同一条射线,故此选项错误;
C.设这个锐角为α,取α=60°,则90°−α=30°<α,故一个角的余角不一定比这个角大,,此选项错误;
D.设这个锐角为β,则180°−β−(90°−β)=90°,所以一个锐角的补角比这个角的余角大90°,故此选项正确;
故选:D
【点睛】
本题考查了线段的性质、射线、余角、补角等定义,是基础题,熟记相关概念与性质是解题的关键.
10、C
【解析】
【分析】
根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.
【详解】
解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,
而题目中从一个顶点引出4条对角线,
∴n-3=4,得到n=7,
∴这个多边形的边数是7.
故选:C.
【点睛】
本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.
二、填空题
1、56
【解析】
【分析】
根据余角的定义即可求得.
【详解】
解:∠A的余角为90°−∠A=90°−34°=56°
故答案为:56
【点睛】
本题考查了余角的定义,掌握余角的定义是关键,这是基础题.
2、45°或15°
【解析】
【分析】
根据角平分线的定义和角的运算,分射线OD在∠AOC外部和射线OD在∠AOC内部求解即可.
【详解】
解:∵射线平分,射找平分,
∴∠MOC= ∠AOC,∠NOC= ∠BOC,
∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB=60°,
∵射线平分,
∴∠MOD= ∠MON=30°,
若射线OD在∠AOC外部时,如图1,
则∠COD=∠MOD-∠MOC=30°-∠AOC,
即2∠COD=60°-∠AOC,
∵,
∴,
解得:∠AOC=45°或15°;
若射线OD在∠AOC内部时,如图2,
则∠COD=∠MOC-∠MOD=∠AOC-30°,
∴2∠COD=∠AOC-60°,即∠AOC-2∠COD=60°,不满足,
综上,∠AOC=45°或15°,
故答案为:45°或15°.
【点睛】
本题考查角平分线的定义、角的运算,熟练掌握角平分线的定义和角的有关计算,利用分类讨论思想求解是解答的关键.
3、
【解析】
【分析】
根据180°-求得,根据即可求得答案
【详解】
解:∵的补角是,
∴
的余角为
故答案为:
【点睛】
本题考查了求一个角的补角和余角,角度进制转换,正确的计算是解题的关键.
4、
【解析】
【分析】
根据角度的和差以及角度值进行化简计算即可
【详解】
解:
90°﹣
故答案为:
【点睛】
本题考查了角度的和差以及角度值,掌握角度值单位的转化是解题的关键.
5、6或15##15或6
【解析】
【分析】
分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可.
【详解】
解:如图,
当点B在线段AC上时,
∵AB=21,BC=9,E、F分别为AB,BC的中点,
∴EB=AB=10.5,BF=BC=4.5,
∴EF=EB+FB=10.5+4.5=15;
如图,
当点C在线段AB上时,
∴EF=EB-FB=10.5-4.5=6,
故答案为:6或15.
【点睛】
本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想、分情况讨论思想是解题的关键.
三、解答题
1、 (1)1,3
(2)﹣3或5
(3)或
【解析】
【分析】
(1)根据定义即可求得答案;
(2)由题意易得CD=2,然后分两种情况讨论m的值,即当CD在AB的左侧时和当CD在AB的右侧时;
(3)由题意可分当t=0时,点C表示的数为0,点D表示的数为﹣2,当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,当t=5时,点C表示的数为10,点D表示的数为4,当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,进而问题可求解.
(1)
解:d1(点O,线段AB)=OA=1﹣0=1,d2(点O,线段AB)=OB=3﹣0=3,
故答案为:1,3;
(2)
解:∵点C,D表示的数分别为m,m+2,
∴点D在点C的右侧,CD=2,
当CD在AB的左侧时,d1(线段CD,线段AB)=DA=1﹣(m+2)=2,
解得:m=﹣3,
当CD在AB的右侧时,d1(线段CD,线段AB)=BC=m﹣3=2,
解得:m=5,
综上所述,m的值为﹣3或5;
(3)
解:当t=0时,点C表示的数为0,点D表示的数为﹣2,则d2=5,
当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,则d2=5﹣2t<6,
当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,则d2=4t﹣1≤6,
解得:t≤,
当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,则d2=19﹣6t≤6,
解得:t≥,
当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,则d2=8t﹣23≤6或2t﹣1≤6,
解得:t≤,
当t=5时,点C表示的数为10,点D表示的数为4,则d2=AC=10﹣1=9>6,
当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,(﹣6<10t﹣46≤4),
∴0≤BD≤9,7≤AC≤9,
∴d2>6,不符合题意,
综上所述,d2(线段CD,线段AB)小于或等于6时,0≤t≤或≤t≤.
【点睛】
本题考查了学生对新定义的理解及分类讨论的应用,正确理解定义及准确的分类是解决本题的关键.
2、 (1)144°,66°
(2)秒或10秒
(3)当0<t<时,的值是1;当<t<6时,的值不是定值
【解析】
【分析】
(1)根据时间和速度分别计算∠BOM和∠DON的度数,再根据角的和与差可得结论;
(2)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t<12时,分别根据已知条件列等式可得t的值;
(3)分两种情况,分别计算∠BON、∠COM和∠MON的度数,代入可得结论.
(1)
由题意得:
当t=2时,
∠MON=∠BOM+∠BOD+∠DON=2×15°+90°+2×12°=144°,
∠AON=∠AOD-∠DON=90°-24°=66°,
故答案为:144°,66°;
(2)
当ON与OA重合时,t=90÷12=7.5(s)
当OM与OA重合时,t=180°÷15=12(s)
如图所示,①当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°
由∠AOM=3∠AON-60°,可得180-15t=3(90-12t)-60,解得t=,
②当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,
由∠AOM=3∠AON-60°,可得180-15t=3(12t-90)-60,解得t=10,
综上,t的值为秒或10秒;
(3)
当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,
∴15t+90+12t=180,解得t=,
如图所示,①当0<t<时,∠COM=90°-15t°,∠BON=90°+12t°,
∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,
∴(定值),
②当<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,
∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,
,
∴(不是定值).
综上所述,当0<t<时,的值是1;当<t<6时,的值不是定值.
【点睛】
本题主要考查了一元一次方程的应用,角的和差关系的计算,解决问题的关键是将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.
3、 (1)见解析
(2)见解析
【解析】
【分析】
(1)根据直线、射线的定义画图即可;
(2)在BC的延长线上截取CD=BC即可.
(1)
解:如图,直线AC,射线BA即为所作;
(2)
解:如图,线段CD即为所作.
【点睛】
本题考查了直线、射线、线段的作图,熟练掌握作一条线段等于已知线段是解答本题的关键.
4、 (1)①见解析,②见解析,③见解析
(2)图见解析,两点之间,线段最短
【解析】
【分析】
(1)①连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;
(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,即可得出依据.
(1)
①如图所示:连接AB作直线即可;
②连接BC并延长即为射线BC;
③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;
(2)
画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,
故答案为:两点之间,线段最短.
【点睛】
题目主要考查直线、射线、线段的作法,两点之间线段最短等,理解题意,结合图形熟练运用基础知识点是解题关键.
5、 (1)∠AOC=40°,∠BOC=80°
(2)40°
(3)∠COD的度数为32°或176°
【解析】
【分析】
(1)根据∠AOC:∠BOC=1:2,即可求解;
(2)先求出∠COM,再求出∠CON,相加即可求解;
(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.
【小题1】
解:∵∠AOC:∠BOC=1:2,∠AOB=120°,
∴∠AOC=∠AOB=×120°=40°,
∠BOC=∠AOB=×120°=80°;
【小题2】
∵OM平分∠AOC,
∴∠COM=∠AOC=×40°=20°,
∵∠CON:∠BON=1:3,
∴∠CON=∠BOC=×80°=20°,
∴∠MON=∠COM+∠CON=20°+20°=40°;
【小题3】
如图,当OD在∠AOB内部时,
设∠BOD=x°,
∵2∠AOD=3∠BOD,
∴∠AOD=,
∵∠AOB=120°,
∴x+=120,
解得:x=48,
∴∠BOD=48°,
∴∠COD=∠BOC-∠BOD=80°-48°=32°,
如图,当OD在∠AOB外部时,
设∠BOD=y°,
∵2∠AOD=3∠BOD,
∴∠AOD=,
∵∠AOB=120°,
∴+y+120°=360°
解得:y=96°,
∴∠COD=∠BOD+∠BOC
=96°+80°
=176°,
综上所述,∠COD的度数为32°或176°.
【点睛】
本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题,共21页。试卷主要包含了下列说法中正确的是,下列现象,下列两个生活等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂达标检测题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂达标检测题,共24页。试卷主要包含了如图,点在直线上,平分,,,则,下列说法正确的是,已知线段AB等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品随堂练习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品随堂练习题,共25页。试卷主要包含了下列说法中正确的是,下列说法错误的是等内容,欢迎下载使用。