开学活动
搜索
    上传资料 赚现金

    2022年冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试题(含答案及详细解析)

    2022年冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试题(含答案及详细解析)第1页
    2022年冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试题(含答案及详细解析)第2页
    2022年冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试题(含答案及详细解析)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后测评

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后测评,共31页。试卷主要包含了在中,,,给出条件等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系章节训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是(  )
    A.4 B.5 C.6 D.7
    2、如图,已知的内接正六边形的边心距是,则阴影部分的面积是( ).

    A. B. C. D.
    3、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    4、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )

    A.3 B.4 C.5 D.6
    5、如图,中,,,点O是的内心.则等于( )

    A.124° B.118° C.112° D.62°
    6、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
    A. B. C. D.
    7、一个正多边形的半径与边长相等,则这个正多边形的边数为(  )
    A.4 B.5 C.6 D.8
    8、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是( )
    A.① B.② C.③ D.①或③
    9、如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为( )

    A.14cm B.8cm C.7cm D.9cm
    10、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为( )
    A.4 B.3 C.2 D.1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在△ABC中,AC=BC,点O在AB上,以OA为半径的圆O与BC相切于点C,∠B=_________.

    2、AC是⊙O的直径,弦BD⊥AC于点E,连接BC,过点O作OF⊥BC于点F,若BD=12cm,OE=cm,则OF=________cm.
    3、已知边长为2的正三角形,能将其完全覆盖的最小圆的面积为__________.
    4、如图,A是⊙O上的一点,且AB是⊙O的切线,CD是⊙O的直径,连接AC、AD.若∠BAC=30°,CD=2,则的长为 _____.

    5、若的半径为5cm,点到圆心的距离为4cm,那么点与的位置关系是__.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.

    (1)求证:是的切线;
    (2)若,求阴影部分的面积.(结果保留)
    2、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.

    (1)求证:直线DE是⊙O的切线;
    (2)若DE=7,CE=5,求⊙O的半径.
    3、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
    小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:

    (1)如图1,当与相切于点时,求的长;
    (2)如图2,当与相切时,
    ①求的长;
    ②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
    4、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.
    小明的解答
    过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴ .
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 ,
    ∴ .
    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
    (3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
    5、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.

    (1)试判断直线与的位置关系,并说明理由;
    (2)若,,求阴影部分的面积(结果保留).

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据点与圆的位置关系可得,由此即可得出答案.
    【详解】
    解:的半径为5,点在内,

    观察四个选项可知,只有选项A符合,
    故选:A.
    【点睛】
    本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.
    2、D
    【解析】
    【分析】
    连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.
    【详解】
    解:连接、,

    ,的内接正六边形,

    ∴△DOE是等边三角形,
    ∴∠DOM=30°,
    设,则

    解得:,

    根据图可得:,


    故选:D.
    【点睛】
    本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.
    3、B
    【解析】
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,

    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    4、B
    【解析】
    【分析】
    由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
    【详解】
    ∵PA,PB是⊙O的切线,A,B为切点,
    ∴,,
    ∴在和中,,
    ∴,
    ∴.
    故选:B
    【点睛】
    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
    5、B
    【解析】
    【分析】
    根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.
    【详解】
    解:∵点O是△ABC的内心,
    ∴OB平分∠ABC,OC平分∠ACB,
    ∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,
    ∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.
    故选B.
    【点睛】
    本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
    6、C
    【解析】
    【分析】
    如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
    【详解】
    解:如图,五边形ABCDE为正五边形,
    ∴五边形的每个内角均为108°,

    ∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
    ∴∠BGF=∠BFG=72°,




    设AF=x,则AC=1+x,


    解得:,
    经检验:不符合题意,舍去,

    故选C
    【点睛】
    本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
    7、C
    【解析】
    【分析】
    如图(见解析),先根据等边三角形的判定与性质可得,再根据正多边形的中心角与边数的关系即可得.
    【详解】
    解:如图,由题意得:,
    是等边三角形,

    则这个正多边形的边数为,
    故选:C.

    【点睛】
    本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键.
    8、B
    【解析】
    【分析】
    画出图形,作,交BE于点D.根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断①②;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意.
    【详解】
    如图,,,点C在射线上.作,交BE于点D.
    ∵,
    ∴为等腰直角三角形,
    ∴,
    ∴不存在的三角形ABC,故①不符合题意;
    ∵,,AC=8,
    而AC>6,
    ∴存在的唯一三角形ABC,
    如图,点C即是.

    ∴,使得BC的长唯一成立,故②符合题意;
    ∵,,
    ∴存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点C和即为使的外接圆的半径等于4的点.

    故③不符合题意.
    故选B.
    【点睛】
    本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质.利用数形结合的思想是解答本题的关键.
    9、B
    【解析】
    【分析】
    根据切线长定理得到BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,然后利用三角形的周长和BC的长求得AE和AD的长,从而求得△AMN的周长.
    【详解】
    解:∵圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,
    ∴BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,
    ∵△ABC周长为20cm,BC=6cm,
    ∴AE=AD====4(cm),
    ∴△AMN的周长为AM+MG+NG+AN=AM+ME+AN+ND=AE+AD=4+4=8(cm),
    故选:B.

    【点睛】
    本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE和AD的长,难度不大.
    10、A
    【解析】
    【分析】
    根据点与圆的位置关系得出OP>3即可.
    【详解】
    解:∵⊙O的半径为3,点P在⊙O外,
    ∴OP>3,
    故选:A.
    【点睛】
    本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外d>r,点在圆上d=r,点在圆内d<r.
    二、填空题
    1、30°##30度
    【解析】
    【分析】
    连接OC,如图,利用切线的性质得到∠BCO=90°,再由CA=CB得到∠B=∠A,利用圆周角定理得到∠BOC=2∠A,则可根据三角形内角和计算出∠B=30°.
    【详解】
    解:连接OC,如图,

    ∵⊙O与BC相切于点C,
    ∴OC⊥BC,
    ∴∠BCO=90°,
    ∵CA=CB,
    ∴∠B=∠A,
    ∵∠BOC=2∠A,
    而∠B+∠BOC=90°,
    ∴∠B+2∠B=90°,解得∠B=30°,
    故答案为:30°.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质和圆周角定理.
    2、或
    【解析】
    【分析】
    根据题意分两种情况并综合利用垂径定理和勾股定理以及圆的基本性质进行分析即可求解.
    【详解】
    解:如图,连接BO

    ∵AC是⊙O的直径,弦BD⊥AC于点E,BD=12cm,
    ∴,
    ∵OE=cm,BD⊥AC,
    ∴cm,
    ∴,,
    ∵OF⊥BC,
    ∴,
    ∴,
    如图,

    ∵OE=cm,BD⊥AC, ,
    ∴,
    ∵OF⊥BC,
    ∴,
    ∴.
    故答案为:或.
    【点睛】
    本题考查圆的综合问题,熟练掌握并利用垂径定理和勾股定理以及圆的基本性质进行分析是解题的关键.注意未作图题一般情况下要进行分类作图讨论.
    3、##
    4、
    【解析】
    【分析】
    连接OA,由切线的性质得出AO⊥AB,得出△OAC是等边三角形,求出∠AOD=120°,由弧长公式可得出答案.
    【详解】
    解:连接OA,
    ∵AB是⊙O的切线,
    ∴AO⊥AB,
    ∴∠OAB=90°,
    ∵∠BAC=30°,
    ∴∠OAC=60°,
    ∵OA=OC,
    ∴△OAC是等边三角形,
    ∴∠C=∠AOC=60°,
    ∴∠AOD=120°,
    ∵CD=2,
    ∴的长为=.

    故答案为.
    【点睛】
    本题考查了切线的性质以及弧长公式,切线的性质定理:圆的切线垂直于过切点的半径;弧长公式:(为圆心角的度数,R表示圆的半径).
    5、点在圆内
    【解析】
    【分析】
    比较点到圆心的距离d与半径r的大小关系;当时,点在圆外;当时,点在圆上;当时,点在圆内;求值后进行判断即可.
    【详解】
    解:的半径为,点A到圆心的距离为

    点A与的位置关系是:点A在圆内
    故答案为:点A在圆内.
    【点睛】
    本题考查了点与圆的位置关系.解题的关键在于比较点到圆心的距离d与半径r的大小关系.
    三、解答题
    1、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
    (2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
    (1)
    证明:连接OD,

    ∵,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠CAD=∠ODA,
    ∴AE∥OD,
    ∴∠E+∠ODE=90°,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠ODE=180°﹣∠E=90°,
    ∵OD是圆O的半径,
    ∴DE是⊙O的切线;
    (2)
    连接BD,

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵∠ADE=60°,∠E=90°,
    ∴∠CAD=90°﹣∠ADE=30°,
    ∴∠DAB=∠CAD=30°,
    ∴AB=2BD,
    ∵,

    ∴BD=2,BA=4,
    ∴OD=OB=2,
    ∴△ODB是等边三角形,
    ∴∠DOB=60°,
    ∴△ADB的面积=AD•DB
    =×2×2
    =2,
    ∵OA=OB,
    ∴△DOB的面积=△ADB的面积=,
    ∴阴影部分的面积为:
    △ADB的面积+扇形DOB的面积﹣△DOB的面积
    =2﹣
    =,
    ∴阴影部分的面积为:.
    【点睛】
    本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.
    2、 (1)见解析
    (2)4
    【解析】
    【分析】
    (1)连接OD,根据题意和平行四边形的性质可得DE∥CG,可得OD⊥DE,即可求解;
    (2)设⊙O的半径为r,因为∠GOD=90°,根据勾股定理可求解r,当r=2时,OG=5,此时点G在⊙O外,不合题意,舍去,可求解.
    (1)
    证明:连接OD,

    ∵∠ACB=90°,AC=BC,
    ∴∠ABC=45°,
    ∴∠COD=2∠ABC=90°,
    ∵四边形GDEC是平行四边形,
    ∴DE∥CG,
    ∴∠ODE+∠COD=180°,
    ∴∠ODE=90°,即OD⊥DE,
    ∵OD是半径,
    ∴直线DE是⊙O的切线;
    (2)
    解:设⊙O的半径为r,
    ∵四边形GDEC是平行四边形,
    ∴CG=DE=7,DG=CE=5,
    ∵∠GOD=90°,
    ∴OD2+OG2=DG2,即r2+(7﹣r)2=52,
    解得:r1=3,r2=4,
    当r=3时,OG=4>3,此时点G在⊙O外,不合题意,舍去,
    ∴r=4,即⊙O的半径4.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.
    3、 (1)BP=2
    (2)①4.8;②9.6
    【解析】
    【分析】
    (1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
    (2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
    (1)
    连接PT,如图:

    ∵⊙P与AD相切于点T,
    ∴∠ATP=90°,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∴四边形ABPT是矩形,
    ∴PT=AB=4=PE,
    ∵E是AB的中点,
    ∴BE=AB=2,
    在Rt△BPE中,;
    (2)
    ①∵⊙P与CD相切,
    ∴PC=PE,
    设BP=x,则PC=PE=10-x,
    在Rt△BPE中,BP2+BE2=PE2,
    ∴x2+22=(10-x)2,
    解得x=4.8,
    ∴BP=4.8;
    ②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:

    由题可知,EM是△ABQ的中位线,
    ∴EM∥BQ,
    ∴∠BEM=90°=∠B,
    ∵PN⊥EM,
    ∴∠PNE=90°,EM=2EN,
    ∴四边形BPNE是矩形,
    ∴EN=BP=4.8,
    ∴EM=2EN=9.6.
    故答案为:9.6.
    【点睛】
    本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
    4、 (1)OP+PQ>ON; OP=OM;PQ>MN
    (2)见解析
    (3)1<r<4
    【解析】
    【分析】
    (1)利用两点之间线段最短解答即可;
    (2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
    (3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
    (1)
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴OP+PQ>ON.
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 OP=OM,
    ∴PQ>MN.
    故答案为:OP+PQ>ON, OP=OM,PQ>MN;
    (2)
    解:如图,

    ⊙O是求作的图形;
    (3)
    (3)如图2,

    作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
    ∴∠FEO′=∠AFE=90°,
    ∴AF∥EO′,
    ∴∠AEO′=∠BAC=60°,
    ∵AO′=EO′,
    ∴△ADO′是等边三角形,
    ∴AE=AO′,
    ∵AB=8,∠B=30°,
    ∴AC=AB=4,
    ∴AF=2,
    ∴⊙O的半径是1,
    ∴AE=AB=4,
    ∴1<r<4,
    故答案是:1<r<4.
    【点睛】
    本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.
    5、 (1)BC与⊙O相切,理由见详解
    (2)
    【解析】
    【分析】
    (1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
    (1)
    解: BC与⊙O相切.
    证明:∵AD是∠BAC的平分线,
    ∴∠BAD=∠CAD.
    又∵OD=OA,
    ∴∠OAD=∠ODA.
    ∴∠CAD=∠ODA.
    ∴OD∥AC.
    ∴∠ODB=∠C=90°,即OD⊥BC.
    又∵BC过半径OD的外端点D,
    ∴BC与⊙O相切;
    (2)
    ∵,∠ODB=90°,,
    ∴,
    在Rt△OBD中,
    由勾股定理得:,
    ∴S△OBD= OD•BD= ,S扇形ODF= ,
    ∴阴影部分的面积=.
    【点睛】
    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀复习练习题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀复习练习题,共33页。试卷主要包含了已知M等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题,共31页。试卷主要包含了已知M等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步测试题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步测试题,共34页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map