![2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试卷(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12721756/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试卷(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12721756/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练试卷(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12721756/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学九年级下册第29章 直线与圆的位置关系综合与测试精练
展开
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精练,共31页。试卷主要包含了下列四个命题中,真命题是,将一把直尺等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知正三角形外接圆半径为,这个正三角形的边长是( )A. B. C. D.2、如图,AB是⊙O的直径,点D在⊙O上,连接OD、BD,过点D作⊙O的切线交BA延长线于点C,若∠C=40°,则∠B的度数为( )A.15° B.20° C.25° D.30°3、如图,在平面直角坐标系中,直线分别与轴、轴相交于点、,点、分别是正方形的边、上的动点,且,过原点作,垂足为,连接、,则面积的最大值为( )A. B.12 C. D.4、如图,已知AB是的直径,C是AB延长线上一点,CE是的切线,切点为D,过点A作于点E,交于点F,连接OD、AD、BF.则下列结论不一定正确的是( )A. B.AD平分 C. D.5、下列四个命题中,真命题是( )A.相等的圆心角所对的两条弦相等 B.三角形的内心是到三角形三边距离相等的点C.平分弦的直径一定垂直于这条弦 D.等弧就是长度相等的弧6、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是( )A.2cm B.2.4cm C.3cm D.3.5cm7、如图,已知的内接正六边形的边心距是,则阴影部分的面积是( ).A. B. C. D.8、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )A.6 B. C.3 D.9、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )A.相离 B.相切 C.相交 D.相交或相切10、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个圆内接正多边形的一条边所对的圆心角是,则该正多边形边数是__________.2、两直角边分别为6、8,那么的内接圆的半径为____________.3、如图,⊙O的半径为5cm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为 ___.4、已知正三角形的边心距为,则正三角形的边长为______.5、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,已知是的直径,点在上,点在外.(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)(2)综合运用,在你所作的图中.若,求证:是的切线.2、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.(1)求证:AC为的切线:(2)若半径为2,.求阴影部分的面积.3、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.(1)求证:;(2)求证:AF是⊙O的切线.4、如图,中,.(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.5、如图,⊙O是ABC的外接圆,∠ABC=45°,OCAD,AD交BC的延长线于D,AB交OC于E.(1)求证:AD是⊙O的切线;(2)若AE=,CE=2,求⊙O的半径和线段BC的长. -参考答案-一、单选题1、B【解析】【分析】如图, 为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA, 再由等边三角形的性质,可得∠OAB=30°,,然后根据锐角三角函数,即可求解.【详解】解:如图, 为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA, 根据题意得:OA= ,∠OAB=30°,,在中, ,∴AB=3,即这个正三角形的边长是3.故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.2、C【解析】【分析】根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.【详解】解:∵CD是⊙O的切线,∴∠CDO=90°,∵∠C=40°,∴∠COD=90°-40°=50°,∵OD=OB,∴∠B=∠ODB,∵∠COD=∠B+∠ODB,∴∠B=∠COD=25°,故选:C.【点睛】本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.3、D【解析】【分析】先证明ON=CN,再证点H在以ON直径的圆上运动,则当点H在QM的延长线上时,点H到AB的距离最大,由相似三角形的性质可求MK,KQ的长,由三角形的面积公式可求解.【详解】解:如图,连接AD,交EF于N,连接OC,取ON的中点M,连接MH,过点M作MQ⊥AB于Q,交AO于点K,作MP⊥OA与点P,∵直线分别与x轴、y轴相交于点A、B,∴点A(4,0),点B(0,-3),∴OB=3,OA=4,∴,∵四边形ACDO是正方形,∴OD//AC,AO=AC=OD=4,OC=4,∠COA=45°,∴∠EDN=∠NAF,∠DEN=∠AFN,又∵DE=AF,∴△DEN≌△AFN(ASA),∴DN=AN,EN=NF,∴点N是AD的中点,即点N是OC的中点,∴ON=NC=2,∵OH⊥EF,∴∠OHN=90°,∴点H在以ON直径的圆上运动,∴当点H在QM的延长线上时,点H到AB的距离最大,∵点M是ON的中点,∴OM=MN=,∵MP⊥OP,∠COA=45°,∴OP=MP=1,∴AP=3,∵∠OAB+∠OBA=90°=∠OAB+∠AKQ,∴∠AKQ=∠ABO=∠MKP,又∵∠AOB=∠MPK=90°,∴△MPK∽△AOB,∴,∴,∴,∴,∵∠AKQ=∠ABO,∠OAB=∠KAQ,∴△AKQ∽△ABO,∴,∴,∴,∴,∴点H到AB的最大距离为,∴△HAB面积的最大值,故选:D.【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,一次函数的应用等知识,求出MQ的长是解题的关键.4、D【解析】【分析】根据直径所对的圆周角是直角,切线的性质即可判断A选项;根据,,进而即可判断B选项;设交于点,证明四边形是矩形,由垂径定理可得,进而可得进而判断C选项;无法判断D选项.【详解】解:∵AB是的直径,∴∵CE是的切线,切点为D,∴,故A选项正确,,即AD平分,故B选项正确,设交于点,如图,∵,∴四边形是矩形,,故C选项正确若,则由于点不一定是的中点,故D选项不正确;故选D【点睛】本题考查了直径所对的圆周角是直角,垂径定理,切线的性质,矩形的判定,掌握圆的相关知识是解题的关键.5、B【解析】【分析】利用圆的有关性质及定理、三角形的内心的性质、垂径定理等知识分别判断后即可确定正确的选项.【详解】解:A、同圆或等圆中,相等的圆心角所对的两条弦相等,则原命题是假命题,故本选项不符合题意;B、三角形的内心是到三角形三边距离相等的点,是真命题,故本选项符合题意;C、平分弦(不是直径)的直径一定垂直于这条弦,则原命题是假命题,故本选项不符合题意;D、等弧是能够完全重合的弧,长度相等的弧不一定是等弧,则原命题是假命题,故本选项不符合题意;故选:B【点睛】本题主要考查了命题与定理的知识,解题的关键是了解圆的有关性质及定理、三角形的内心的性质、垂径定理等知识,难度不大.6、B【解析】【分析】如图所示,过C作CD⊥AB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r.【详解】解:如图所示,过C作CD⊥AB,交AB于点D,在Rt△ABC中,AC=3cm,BC=4cm,根据勾股定理得:AB==5(cm),∵S△ABC=BC•AC=AB•CD,∴×3×4=×10×CD,解得:CD=2.4,则r=2.4(cm).故选:B.【点睛】此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.7、D【解析】【分析】连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.【详解】解:连接、,,的内接正六边形,,∴△DOE是等边三角形,∴∠DOM=30°,设,则,解得:,,根据图可得:,,.故选:D.【点睛】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.8、D【解析】【分析】如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.【详解】解:如图所示,设圆的圆心为O,连接OC,OB,∵AC,AB都是圆O的切线,∴∠OCA=∠OBA=90°,OC=OB,又∵OA=OA,∴Rt△OCA≌Rt△OBA(HL),∴∠OAC=∠OAB,∵∠DAC=60°,∴,∴∠AOB=30°,∴OA=2AB=6,∴,∴圆O的直径为,故选D.【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.9、B【解析】【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm, ⊙O的半径等于圆心O到直线l的距离, 直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.10、B【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题1、六【解析】【分析】根据正多边形的中心角=计算即可.【详解】解:设正多边形的边数为n.由题意得,=60°,∴n=6,故答案为:六.【点睛】本题考查正多边形和圆,解题的关键是记住正多边形的中心角=.2、5【解析】【分析】直角三角形外接圆的直径是斜边的长.【详解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10,∴这个三角形的外接圆半径长为5,故答案为:5.【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.3、【解析】【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】如图,连接BO,OC,OA,由题意得:△BOC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,∴,.故答案为:.【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出.4、6【解析】【分析】直接利用正三角形的性质得出BO=2DO=2,再由勾股定理求出BD的长即可解决问题.【详解】解:如图所示:连接BO,由题意可得,OD⊥BC,OD=,∠OBD=30°,故BO=2DO=2.BC=2BD由勾股定理得, ∴ 故答案为:6.【点睛】此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.5、15##十五【解析】【分析】根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.【详解】解:如图,设正多边形的外接圆为⊙O,连接OA,OB,∵∠ADB=12°,∴∠AOB=2∠ADB=24°,而360°÷24°=15,∴这个正多边形为正十五边形,故答案为:15.【点睛】本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.三、解答题1、 (1)作图见解析(2)证明见解析【解析】【分析】(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.(1)解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.(2)解:连接AD,如图∵为直径∴∵∴∴又∵AB为直径∴AE是的切线.【点睛】本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.2、 (1)见解析(2)【解析】【分析】(1)根据切线的判定方法,证出即可;(2)由勾股定理得,,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.(1)解:如图,连接OB,∵AB是的切线,∴,即,∵BC是弦,,∴,∴,在和中,,∴,∴,即,∴AC是的切线;(2)解:在中,由勾股定理得,,,在中,,∴,∴,∴,∴.【点睛】本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.3、 (1)见解析;(2)见解析【解析】【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.(1)解:∵,∴,又∵,∴,∴ ;(2)解:如图,连接OA, ∵,∴,∴,∵,∴,∴,∵已知,∴,∴,∴,∴,∴AF为⊙O的切线.【点睛】本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.4、 (1)见解析(2)cm【解析】【分析】(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;(1)解:如图,(2)解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.①∵,∴设AC=3x,AB=5x,∴BC==4x,∵的周长为12cm,∴3x+4x+5x=12,∴x=1,∴AC=3,AB=5,∵⊙O 与 AB 、 BC 所在直线相切∴BE=BC=4,∴AE=AB-BE=5-4=1,AO=3-r,在Rt△AOE中,∵AO2=AE2+OE2,∴(3-r)2=12+r2,∴r=;②∵,∴设AC=3x,AB=5x,∴BC==4x,∵,∴4x=12,∴x=1,∴AC=3,AB=5,∵⊙O 与 AB 、 BC 所在直线相切∴BE=BC=4,∴AE=AB-BE=5-4=1,AO=3-r,在Rt△AOE中,∵AO2=AE2+OE2,∴(3-r)2=12+r2,∴r=;即⊙O的半径为cm.【点睛】本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.5、 (1)见解析(2)4,【解析】【分析】(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;(2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.(1)证明:连接OA.∵, ∴∠AOC+∠OAD=180°,∵∠AOC=2∠ABC=2×45°=90°,∴∠OAD=90°, ∴OA⊥AD, ∵OA是半径,∴AD是⊙O的切线. (2)解:设⊙O的半径为R,则OA=R,OE=R-2.在Rt△OAE中,,∴,解得或(不合题意,舍去),延长CO交⊙O于F,连接AF,∵∠AEF=∠CEB,∠B=∠AFE,∴△CEB∽△AEF,∴, ∵CF是直径,∴CF=8,∠CAF=90°,又∵∠F=∠ABC=45°, ∴∠F=∠ACF=45°,∴AF=,∴, ∴BC=. .【点睛】此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.
相关试卷
这是一份初中数学第29章 直线与圆的位置关系综合与测试精品课后练习题,共33页。试卷主要包含了如图,A等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后复习题,共34页。试卷主要包含了以半径为1的圆的内接正三角形等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评,共31页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。