![2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系专题测试试题第1页](http://img-preview.51jiaoxi.com/2/3/12721668/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系专题测试试题第2页](http://img-preview.51jiaoxi.com/2/3/12721668/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系专题测试试题第3页](http://img-preview.51jiaoxi.com/2/3/12721668/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第29章 直线与圆的位置关系综合与测试同步测试题
展开
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试同步测试题,共33页。试卷主要包含了以半径为1的圆的内接正三角形,将一把直尺等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,中,,,点O是的内心.则等于( )
A.124° B.118° C.112° D.62°
2、如图,⊙O的半径为2,PA,PB,CD分别切⊙O于点A,B,E,CD分别交PA,PB于点C,D,且P,E,O三点共线.若∠P=60°,则CD的长为( )
A.4 B.2 C.3 D.6
3、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )
A.1cm B.2cm C.2cm D.4cm
4、一个正多边形的半径与边长相等,则这个正多边形的边数为( )
A.4 B.5 C.6 D.8
5、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
A.OP>4 B.0≤OP2 D.0≤OP4,
故选:A.
【点睛】
此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
6、C
【解析】
【分析】
分别计算出正三角形、正方形、正六边形的边心距,后根据勾股定理的逆定理,等腰三角形的判定,等边三角形的判定,三角形构成的条件,判断即可.
【详解】
如图,∵正三角形、正方形、正六边形都内接于半径为1的圆,边心距分别为OC,OE,OG,OA=1,∠AOC=60°,∠AOE=45°,∠AOG=30°,
∴OC=OAcos60°=,OE= OAcos45°=,OG= OAcos30°=,
∵,
∴这个三角形是直角三角形,
故选C.
【点睛】
本题考查了正多边形与圆,特殊角的三角函数,勾股定理的逆定理,熟练掌握正多边形的计算是解题的关键.
7、B
【解析】
【分析】
⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
【详解】
解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
则∠CDI=∠C=∠CFI=90°,ID=IF=1,
∴四边形CDIF是正方形,
∴CD=CF=1,
由切线长定理得:AD=AE,BE=BF,CF=CD,
∵直角三角形的外接圆半径为3,内切圆半径为1,
∴AB=6=AE+BE=BF+AD,
即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
故选:B.
【点睛】
本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
8、B
【解析】
【分析】
连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
【详解】
解:连接 为的直径,
为的切线,
故选B
【点睛】
本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
9、D
【解析】
【分析】
如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
【详解】
解:如图所示,设圆的圆心为O,连接OC,OB,
∵AC,AB都是圆O的切线,
∴∠OCA=∠OBA=90°,OC=OB,
又∵OA=OA,
∴Rt△OCA≌Rt△OBA(HL),
∴∠OAC=∠OAB,
∵∠DAC=60°,
∴,
∴∠AOB=30°,
∴OA=2AB=6,
∴,
∴圆O的直径为,
故选D.
【点睛】
本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
10、D
【解析】
【分析】
过A点作AH⊥BC于H,如图,利用等腰三角形的性质得到BH=CH=BC=4,则利用勾股定理可计算出AH=3,然后根据点与圆的位置关系的判定方法对A选项和B选项进行判断;根据直线与圆的位置关系对C选项和D选项进行判断.
【详解】
解:过A点作AH⊥BC于H,如图,
∵AB=AC,
∴BH=CH=BC=4,
在Rt△ABH中,AH==3,
∵AB=5>3,
∴B点在⊙A外,所以A选项不符合题意;
∵AC=5>3,
∴C点在⊙A外,所以B选项不符合题意;
∴AH⊥BC,AH=3>半径,
∴直线BC与⊙A相离,所以C选项不符合题意,D选项符合题意.
故选:D.
【点睛】
本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,若直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了点与圆的位置关系和等腰三角形的性质.
二、填空题
1、2或或0
【解析】
【分析】
当⊙P与x轴相切时,圆心P的纵坐标为1或-1,根据圆心P在抛物线上,所以当y为±1时,可以求出点P的横坐标.
【详解】
解:当y=1时,有1=-x2+1,x=0.
当y=-1时,有-1=-x2+1,x=.
故答案是:2或或0.
【点睛】
本题考查的是二次函数的综合题,利用圆与x轴相切得到点P的纵坐标,然后代入抛物线求出点P的横坐标.
2、132°
【解析】
【分析】
连接AO、BO、CO,根据AB是⊙O的内接正六边形的一边,可得 , ,从而得到∠ABO=60°,再由BC是⊙O的内接正十边形的一边,可得 ,BO=CO,从而得到,即可求解.
【详解】
解:如图,连接AO、BO、CO,
∵AB是⊙O的内接正六边形的一边,
∴ , ,
∴ ,
∵BC是⊙O的内接正十边形的一边,
∴ ,BO=CO,
∴,
∴∠ABC=∠ABO+ ∠CBO=60°+72°=132°.
故答案为:132°
【点睛】
本题主要考查了圆的内接多边形的性质,等腰三角形的性质,熟练掌握圆的内接多边形的性质,等腰三角形的性质是解题的关键.
3、##0.8
【解析】
【分析】
连接OI,BI,作OE⊥AC,可证△AOD是等腰三角形,然后证明OD∥BC,进而∠ADO=∠ACB,解三角形AOD即可.
【详解】
解:如图,连接OI并延长交AC于D,连接BI,
∵AI与⊙O相切,
∴AI⊥OD,
∴∠AIO=∠AID=90°,
∵I是△ABC的内心,
∴∠OAI=∠DAI,∠ABI=∠CBI,
∵AI=AI,
∴△AOI≌△ADI(ASA),
∴AO=AD,
∵OB=OI,
∴∠OBI=∠OIB,
∴∠OIB=∠CBI,
∴OD∥BC,
∴∠ADO=∠C,
作OE⊥AC于E,
∵tan∠BAC==,
∴不妨设OE=24k,AE=7k,
∴OA=AD=25k,
∴DE=AD﹣AE=18k,
∴OD==30k,
∴sin∠ACB=== .
故答案是:
【点睛】
本题主要考查了切线的性质,锐角三角函数,等腰三角形的性质和判定,全等三角形的判定和性质等知识,熟练掌握相关知识点是解题的关键.
4、40
【解析】
【分析】
利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理得出答案.
【详解】
解:连接EO,DO,
∵⊙O是△ABC的内切圆,切点分别为D,E,F,
∴OE⊥BC,OD⊥AC,BF=BE=12,AD=AF=5,EC=CD,
又∵∠C=90°,
∴四边形ECDO是矩形,
又∵EO=DO,
∴矩形OECD是正方形,
设EO=x,
则EC=CD=x,
在Rt△ABC中
BC2+AC2=AB2
故(x+12)2+(x+5)2=172,
解得:x=3(负值已舍),
∴△ABC的周长=8+15+17=40.
故答案为:40.
【点睛】
本题主要考查了三角形内切圆与内心,切线长定理,勾股定理,正方形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.
5、##
【解析】
【分析】
连接EO,并延长交圆于点G,在Rt△DEF中求出EF的值,再证明△DEF∽△FGE,然后根据相似三角形的性质即可求解.
【详解】
解:连接EO,并延长交圆于点G,
∵四边形是矩形,
∴CD=,∠D=90°,
∵与相切于点,
∴OE⊥CD,再结合矩形的性质可得:
∴DE=CE=3.
∵,
∴EF=.
∵与相切于点,
∴∠GED=90°.
∵GE是直径,
∴∠GFE=90°,
∴∠DEF+∠GEF=90°,∠EGF+∠GEF=90°,
∴∠DEF=∠EGF.
∵∠D=∠∠GFE=90°,
∴△DEF∽△FGE,
∴,
∴,
∴GE=,
∴的半径是,
故答案为;.
【点睛】
本题考查了矩形的性质,勾股定理,切线的性质,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
(1)
连接PC,
∵PC=PB,
∴∠B=∠PCB,
∴∠APC=2∠B,
∵2∠B+∠DAB=180°,
∴∠DAP+∠APC=180°,
∴PC∥DA,
∵∠ADC=90°,
∴∠DCP=90°,
即DC⊥CP,
∴直线CD为⊙P的切线;
(2)
连接AC,
∵∠B=30°,
∴∠CPA=2∠B=60°,
∵AP=CP,∠CPA=60°,
∴△APC为等边三角形,
∵∠DCP=90°,
∴∠DCA=90°-∠ACP=90°-60°=30°,
∵AD=2,∠ADC=90°,
∴AC=2AD=4,
∴CD=.
【点睛】
本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
(1)
证明:如图所示,连接OC,
∵AB是的直径,直线l与相切于点A,
∴,
∵,,
∴,,
∴,
∴,
∴直线DC是的切线.
(2)
解:∵,
∴,
又∵,
∴是等边三角形,
∴,
在中,,
∴,
∴,
∴,
∴阴影部分的面积=.
【点睛】
本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
3、 (1)见解析;
(2)见解析,的半径为
【解析】
【分析】
(1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
(1)
如图所示,点O即为所求
(2)
如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
∴∠CAP=90°,PA=PB=3,∠CBO=90°,
∵AC=4,
∴PC==5,BC=5-3=2,
设圆的半径为x,则OC=4-x,
∴,
解得x=,
故圆的半径为.
【点睛】
本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
4、 (1)①(4,3)或C(4,−3),,②,
(2)
【解析】
【分析】
(1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
(2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
(1)
①如图1中,
在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
圆心C的坐标为(4,3),半径为3,
根据对称性可知点C(4,−3)也满足条件,
故答案是:(4,3)或C(4,−3),,
②y轴的正半轴上存在线段AB的“等角点”。
如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,
∵⊙C的半径,
∴⊙C与y轴相交,
设交点为,,此时,在y轴的正半轴上,
连接、、CA,则==CA =r=3,
∵CD⊥y轴,CD=4,,
∴,
∴,;
当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
故答案为:,
(2)
当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,
∵点P,点N在⊙E上,
∴∠APB=∠ANB,
∵∠ANB是△MAN的外角,
∴∠ANB>∠AMB,
即∠APB>∠AMB,
此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
∵⊙E与y轴相切于点P,则EP⊥y轴,
∴四边形OPEF是矩形,OP=EF,PE=OF=4,
∴⊙E的半径为4,即EA=4,
∴在Rt△AEF中,,
∴,
即 .
故答案为:
【点睛】
本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
5、 (1)见解析
(2)
【解析】
【分析】
(1)根据切线的判定方法,证出即可;
(2)由勾股定理得,,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.
(1)
解:如图,连接OB,
∵AB是的切线,
∴,即,
∵BC是弦,,
∴,
∴,在和中,,
∴,
∴,即,
∴AC是的切线;
(2)
解:在中,
由勾股定理得,,,
在中,,
∴,
∴,
∴,
∴.
【点睛】
本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.
相关试卷
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试单元测试巩固练习,共31页。试卷主要包含了如图,,如图,将的圆周分成五等分等内容,欢迎下载使用。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试达标测试,共34页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后复习题,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)