![2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12721663/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12721663/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12721663/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时作业
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时作业,共32页。试卷主要包含了如图,,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A. B.四边形EFGH是菱形
C. D.
2、若正方形的边长为4,则它的外接圆的半径为( )
A. B.4 C. D.2
3、如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是( )
A.30° B.36° C.45° D.72°
4、如图,AB是⊙O的直径,点M在BA的延长线上,MA=AO,MD与⊙O相切于点D,BC⊥AB交MD的延长线于点C,若⊙O的半径为2,则BC的长是( )
A.4 B. C. D.3
5、如图,、是的切线,、是切点,点在上,且,则等于( )
A.54° B.58° C.64° D.68°
6、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为( )
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
7、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是( )
A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)
8、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A. B. C. D.
9、已知⊙O的半径为4,,则点A在( )
A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
10、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )
A.10cm B.8cm C.6cm D.5cm
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点P为⊙O外一点,直线PO与⊙O的两个公共点为A,B,过点P作⊙O的切线,切点为C,连接AC,若∠CPO=40°,则∠CAB=_____度.
2、如图,半径为2的与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为______.
3、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.
4、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,,则图中阴影部分的面积为________.
5、已知正六边形的周长是24,则这个正六边形的半径为_____ .
三、解答题(5小题,每小题10分,共计50分)
1、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.
(1)求证:是的切线;
(2)若,求阴影部分的面积.(结果保留)
2、如图,中,.
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
3、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.
(1)求证:AB是的切线;
(2)若,,求的半径.
4、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.
(1)试判断直线与的位置关系,并说明理由;
(2)若,,求阴影部分的面积(结果保留).
5、如图,已知是的直径,点在上,点在外.
(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
(2)综合运用,在你所作的图中.若,求证:是的切线.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
∴EF=2CE,
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
2、C
【解析】
【分析】
根据圆内接正多边形的性质可得正方形的中心即圆心,进而可知正方形的对角线即为圆的直径,根据勾股定理求得正方形对角线的长度即可求得它的外接圆的半径.
【详解】
解:∵四边形是正方形,
∴的交点即为它的外接圆的圆心,
故选C
【点睛】
本题考查了圆内接正多边形的性质,勾股定理,理解正方形的对角线即为圆的直径是解题的关键.
3、B
【解析】
【分析】
连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;
【详解】
解:如图,连接OC,OD.
∵五边形ABCDE是正五边形,
∴∠COD==72°,
∴∠CPD=∠COD=36°,
故选:B
【点睛】
本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、B
【解析】
【分析】
连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODM=90°,根据勾股定理求出MD,再根据勾股定理求出BC即可.
【详解】
解:连接OD,
∵MD切⊙O于D,
∴∠ODM=90°,
∵⊙O的半径为2,MA=AO,AB是⊙O的直径,
∴MO=2+2=4,MB=4+2=6,OD=2,
由勾股定理得:MD===2,
∵BC⊥AB,
∴BC切⊙O于B,
∵DC切⊙O于D,
∴CD=BC,
设CD=CB=x,
在Rt△MBC中,由勾股定理得:MC2=MB2+BC2,
即(2+x)2=62+x2,
解得:x=2,
即BC=2,
故选:B.
【点睛】
本题考查了切线的性质和判定,圆周角定理,勾股定理等知识点,能综合运用定理进行推理是解此题的关键.
5、C
【解析】
【分析】
连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
【详解】
解:连接,,如下图:
∴
∵PA、PB是的切线,A、B是切点
∴
∴由四边形的内角和可得:
故选C.
【点睛】
此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
6、B
【解析】
【分析】
根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
即点A到圆心O的距离小于圆的半径,
∴点A在⊙O内.
故选:B.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
7、A
【解析】
【分析】
首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
【详解】
解:∵△ABC的外心即是三角形三边垂直平分线的交点,
如图所示:EF与MN的交点O′即为所求的△ABC的外心,
∴△ABC的外心坐标是(﹣2,﹣1).
故选:A
【点睛】
此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
8、B
【解析】
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
9、C
【解析】
【分析】
根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
【详解】
解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
∴d>r,
∴点A在⊙O外,
故选:C.
【点睛】
本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
10、D
【解析】
【分析】
作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果.
【详解】
解:作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,
由题意可知cm,cm;
∵
∴AC=BC=4cm,
设茶杯的杯口外沿半径为
则在中,由勾股定理知
解得
故选D.
【点睛】
本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.
二、填空题
1、25或65
【解析】
【分析】
由切线性质得出∠OCP=90°,根据圆周角定理和等腰三角形的性质以及三角形的外角性质求得∠CAB或∠CBA的度数即可解答.
【详解】
解:如图1,连接OC,
∵PC是⊙O的切线,
∴OC⊥PC,即∠OCP=90°,
∵∠CPO=40°,
∴∠POC=90°-40°=50°,
∵OA=OC,
∴∠CAB=∠OCA,
∴∠POC=2∠CAB,
∴∠CAB=25°,
如图2,∠CBA=25°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠CBA=65°,
综上,∠CAB=25°或65°.
【点睛】
本题考查圆周角定理、切线的性质、等腰三角形的性质、三角形的外角性质、直角三角形的两锐角互余,熟练掌握切线性质和等腰三角形的性质是解答的关键.
2、##
【解析】
【分析】
连接OB,OD,根据正多边形内角和公式可求出∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.
【详解】
解:连接OB,OD,
∵五边形ABCDE是正五边形,
∴∠E=∠A=.
∵AB、DE与⊙O相切,
∴∠OBA=∠ODE=90°,
∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,
∴劣弧BD的长为,
故答案为:.
【点睛】
本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.
3、15##十五
【解析】
【分析】
根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.
【详解】
解:如图,设正多边形的外接圆为⊙O,连接OA,OB,
∵∠ADB=12°,
∴∠AOB=2∠ADB=24°,
而360°÷24°=15,
∴这个正多边形为正十五边形,
故答案为:15.
【点睛】
本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.
4、
【解析】
【分析】
由正六边形ABCDEF的边长为2,可得AB=BC=2,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积
【详解】
解:∵正六边形ABCDEF的边长为2,
=120°,
∵∠ABC+∠BAC+∠BCA=180°,
∴∠BAC=(180°-∠ABC)=×(180°-120°)=30°,
过B作BH⊥AC于H,
∴AH=CH,BH=AB=×2=1,
在Rt△ABH中,
AH= =,
∴AC=2 ,
同理可证,∠EAF=30°,
∴∠CAE=∠BAF-∠BAC-∠EAF=120°-30°-30°=60°,
∴
∴图中阴影部分的面积为2π,
故答案为:.
【点睛】
本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.
5、4
【解析】
【分析】
由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.
【详解】
解:∵正六边形可以由其半径分为六个全等的正三角形,
而三角形的边长就是正六边形的半径,
又∵正六边形的周长为24,
∴正六边形边长为24÷6=4,
∴正六边形的半径等于4.
故答案为4.
【点睛】
此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
(2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
(1)
证明:连接OD,
∵,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴AE∥OD,
∴∠E+∠ODE=90°,
∵DE⊥AC,
∴∠E=90°,
∴∠ODE=180°﹣∠E=90°,
∵OD是圆O的半径,
∴DE是⊙O的切线;
(2)
连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ADE=60°,∠E=90°,
∴∠CAD=90°﹣∠ADE=30°,
∴∠DAB=∠CAD=30°,
∴AB=2BD,
∵,
∴
∴BD=2,BA=4,
∴OD=OB=2,
∴△ODB是等边三角形,
∴∠DOB=60°,
∴△ADB的面积=AD•DB
=×2×2
=2,
∵OA=OB,
∴△DOB的面积=△ADB的面积=,
∴阴影部分的面积为:
△ADB的面积+扇形DOB的面积﹣△DOB的面积
=2﹣
=,
∴阴影部分的面积为:.
【点睛】
本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.
2、 (1)见解析
(2)cm
【解析】
【分析】
(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
(1)
解:如图,
(2)
解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
①∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵的周长为12cm,
∴3x+4x+5x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
②∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵,
∴4x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
即⊙O的半径为cm.
【点睛】
本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.
3、 (1)见解析
(2)2.4.
【解析】
【分析】
(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;
(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.
(1)
如图所示:过O作OD⊥AB交AB于点D.
∵OC⊥BC,且BO平分∠ABC,
∴OD=OC,
∵OC是圆O的半径
∴AB与圆O相切.
(2)
设圆O的半径为r,即OC=r,
∵
∴
∴
∵OC⊥BC,且OC是圆O的半径
∴BC是圆O的切线,
又AB是圆O的切线,
∴BD=BC=3r
在中,
∴
∴
在中,
∴
整理得,
解得,,(不合题意,舍去)
∴的半径为2.4
【点睛】
此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.
4、 (1)BC与⊙O相切,理由见详解
(2)
【解析】
【分析】
(1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
(2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.
(1)
解: BC与⊙O相切.
证明:∵AD是∠BAC的平分线,
∴∠BAD=∠CAD.
又∵OD=OA,
∴∠OAD=∠ODA.
∴∠CAD=∠ODA.
∴OD∥AC.
∴∠ODB=∠C=90°,即OD⊥BC.
又∵BC过半径OD的外端点D,
∴BC与⊙O相切;
(2)
∵,∠ODB=90°,,
∴,
在Rt△OBD中,
由勾股定理得:,
∴S△OBD= OD•BD= ,S扇形ODF= ,
∴阴影部分的面积=.
【点睛】
本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.
5、 (1)作图见解析
(2)证明见解析
【解析】
【分析】
(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
(1)
解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.
(2)
解:连接AD,如图
∵为直径
∴
∵
∴
∴
又∵AB为直径
∴AE是的切线.
【点睛】
本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
相关试卷
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试课时作业,共31页。试卷主要包含了将一把直尺等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后复习题,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。
这是一份2021学年第29章 直线与圆的位置关系综合与测试课堂检测,共29页。试卷主要包含了如图,A等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)