开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试练习题(无超纲)

    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试练习题(无超纲)第1页
    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试练习题(无超纲)第2页
    2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试练习题(无超纲)第3页
    还剩35页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试练习

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试练习,共38页。试卷主要包含了如图,将的圆周分成五等分,将一把直尺等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,等边△ABC内接于⊙O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC的面积为;④若CF=2,则图中阴影部分的面积为.正确的个数为(  )

    A.1个 B.2个 C.3个 D.4个
    2、如图,PA、PB是的切线,A、B为切点,连接OB、AB,若,则的度数为( )

    A.50° B.55° C.65° D.70°
    3、如图,已知AB是的直径,C是AB延长线上一点,CE是的切线,切点为D,过点A作于点E,交于点F,连接OD、AD、BF.则下列结论不一定正确的是( )

    A. B.AD平分 C. D.
    4、如图,将的圆周分成五等分(分点为A、B、C、D、E),依次隔一个分点相连,即成一个正五角星形.小张在制图过程中,惊讶于图形的奇妙,于是对图形展开了研究,得到:点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点.在以下结论中,不正确的是( )

    A. B.
    C. D.
    5、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )

    A.19° B.38° C.52° D.76°
    6、如图,AB是⊙O的直径,点M在BA的延长线上,MA=AO,MD与⊙O相切于点D,BC⊥AB交MD的延长线于点C,若⊙O的半径为2,则BC的长是(  )

    A.4 B. C. D.3
    7、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )
    A.12 B.14 C.16 D.18
    8、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是(  )

    A.30° B.36° C.60° D.72°
    9、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    10、如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于( )

    A.20° B.30° C.50° D.40°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若的半径为5cm,点到圆心的距离为4cm,那么点与的位置关系是__.
    2、以平面直角坐标系原点O为圆心,半径为3的圆与直线x=3的位置关系是______.
    3、若⊙O的半径为3cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是:点A在⊙O_______.(填“上”、“内”、“外”)
    4、已知正三角形的边心距为,则正三角形的边长为______.
    5、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.

    三、解答题(5小题,每小题10分,共计50分)
    1、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
    小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:

    (1)如图1,当与相切于点时,求的长;
    (2)如图2,当与相切时,
    ①求的长;
    ②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
    2、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.

    (1)求证:DM是的切线;
    (2)求证:;
    (3)若,,求的半径.
    3、如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,.

    (1)求证:PC是⊙O的切线;
    (2)求证:;
    (3)若,△ACD的面积为12,求PB的长.
    4、如图,中,.

    (1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
    (2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
    5、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.

    (1)求证:直线DE是⊙O的切线;
    (2)若DE=7,CE=5,求⊙O的半径.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    如图1,△ABC是等边三角形,则∠ABC=60°,根据同弧所对的圆周角相等∠ADC=∠ABC=60°,所以判断①正确;如图1,可证明△DBE∽△DAC,则,所以DB•DC=DE•DA,而DB与DC不一定相等,所以判断②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,先证明△ABK≌△ACD,可证明S四边形ABDC=S△ADK,可以求得S△ADK=,所以判断③正确;如图3,连接OA、OG、OC、GC,由CF切⊙O于点C得CF⊥OC,而AF⊥CF,所以AF∥OC,由圆周角定理可得∠AOC=120°,则∠OAC=∠OCA=30°,于是∠CAG=∠OCA=30°,则∠COG=2∠CAG=60°,可证明△AOG和△COG都是等边三角形,则四边形OABC是菱形,因此OA∥CG,推导出S阴影=S扇形COG,在Rt△CFG中根据勾股定理求出CG的长为4,则⊙O的半径为4,可求得S阴影=S扇形COG==,所以判断④正确,所以①③④这3个结论正确.
    【详解】
    解:如图1,∵△ABC是等边三角形,
    ∴∠ABC=60°,
    ∵等边△ABC内接于⊙O,
    ∴∠ADC=∠ABC=60°,
    故①正确;
    ∵∠BDE=∠ACB=60°,∠ADC=∠ABC=60°,
    ∴∠BDE=∠ADC,
    又∠DBE=∠DAC,
    ∴△DBE∽△DAC,
    ∴,
    ∴DB•DC=DE•DA,
    ∵D是上任一点,
    ∴DB与DC不一定相等,
    ∴DB•DC与DB2也不一定相等,
    ∴DB2与DE•DA也不一定相等,
    故②错误;

    如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,
    ∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,
    ∴∠ABK=∠ACD,
    ∴AB=AC,
    ∴△ABK≌△ACD(SAS),
    ∴AK=AD,S△ABK=S△ACD,
    ∴DH=KH=DK,

    ∵∠AHD=90°,∠ADH=60°,
    ∴∠DAH=30°,
    ∵AD=2,
    ∴DH=AD=1,
    ∴DK=2DH=2,,
    ∴S△ADK=,
    ∴S四边形ABDC=S△ABD+S△ACD=S△ABD+S△ABK=S△ADK=,
    故③正确;
    如图3,连接OA、OG、OC、GC,则OA=OG=OC,
    ∵CF切⊙O于点C,
    ∴CF⊥OC,
    ∵AF⊥CF,
    ∴AF∥OC,
    ∵∠AOC=2∠ABC=120°,
    ∴∠OAC=∠OCA=×(180°﹣120°)=30°,
    ∴∠CAG=∠OCA=30°,
    ∴∠COG=2∠CAG=60°,
    ∴∠AOG=60°,
    ∴△AOG和△COG都是等边三角形,
    ∴OA=OC=AG=CG=OG,
    ∴四边形OABC是菱形,
    ∴OA∥CG,
    ∴S△CAG=S△COG,
    ∴S阴影=S扇形COG,
    ∵∠OCF=90°,∠OCG=60°,
    ∴∠FCG=30°,
    ∵∠F=90°,
    ∴FG=CG,
    ∵FG2+CF2=CG2,CF=,
    ∴(CG)2+()2=CG2,
    ∴CG=4,
    ∴OC=CG=4,
    ∴S阴影=S扇形COG==,
    故④正确,
    ∴①③④这3个结论正确,
    故选C.

    【点睛】
    本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.
    2、A
    【解析】
    【分析】
    根据切线的性质得出PA=PB,∠PBO=90°,再根据三角形内角和定理求解即可.
    【详解】
    ∵PA、PB是⊙O的切线,
    ∴PA=PB,∠OBP=90°,
    又∵∠ABO=25°,
    ∴∠PBA=90°-25°=65°=∠PAB,
    ∴∠P=180°-65°-65°=50°,
    故选:A.
    【点睛】
    本题考查切线的性质,三角形内角和定理,掌握切线的性质和等腰三角形的性质,三角形内角和为180°是解题的关键.
    3、D
    【解析】
    【分析】
    根据直径所对的圆周角是直角,切线的性质即可判断A选项;根据,,进而即可判断B选项;设交于点,证明四边形是矩形,由垂径定理可得,进而可得进而判断C选项;无法判断D选项.
    【详解】
    解:∵AB是的直径,


    ∵CE是的切线,切点为D,


    ,故A选项正确,





    即AD平分,故B选项正确,
    设交于点,如图,

    ∵,
    ∴四边形是矩形



    ,故C选项正确
    若,则
    由于点不一定是的中点,故D选项不正确;
    故选D
    【点睛】
    本题考查了直径所对的圆周角是直角,垂径定理,切线的性质,矩形的判定,掌握圆的相关知识是解题的关键.
    4、C
    【解析】
    【分析】
    利用正五边形的性质,圆的性质,相似三角形的判定和性质,黄金分割定理判断即可.
    【详解】
    如图,连接AB,BC,CD,DE,EA,
    ∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
    ∴,
    ∵AB=BC=CD=DE=EA,
    ∴∠DAE=∠AEB,
    ∴AM=ME,
    ∴,
    ∴A正确,不符合题意;
    ∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
    ∴点F是线段BD的黄金分割点,
    ∴,
    ∵AB=BC=CD=DE=EA,∠BCD=∠AED,
    ∴△BCD≌△AED,
    ∴AD=BD,
    ∴,
    ∴B正确,不符合题意;

    ∵AB=BC=CD=DE=EA, ∠BAE=108°,
    ∴∠BAC=∠CAD=∠DAE,
    ∴∠CAD=36°,
    ∴D正确,不符合题意;
    ∵∠CAD=36°, AN=BN=AM=ME,
    ∴∠ANM=∠AMN=72°,
    ∴AM>MN,
    ∴C错误,符合题意;
    故选C.
    【点睛】
    本题考查了圆的性质,正五边形的性质,三角形的全等,黄金分割,熟练掌握圆的性质,正五边形的性质,黄金分割的意义是解题的关键.
    5、B
    【解析】
    【分析】
    连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
    【详解】
    解:连接 为的直径,




    为的切线,


    故选B
    【点睛】
    本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
    6、B
    【解析】
    【分析】
    连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODM=90°,根据勾股定理求出MD,再根据勾股定理求出BC即可.
    【详解】
    解:连接OD,

    ∵MD切⊙O于D,
    ∴∠ODM=90°,
    ∵⊙O的半径为2,MA=AO,AB是⊙O的直径,
    ∴MO=2+2=4,MB=4+2=6,OD=2,
    由勾股定理得:MD===2,
    ∵BC⊥AB,
    ∴BC切⊙O于B,
    ∵DC切⊙O于D,
    ∴CD=BC,
    设CD=CB=x,
    在Rt△MBC中,由勾股定理得:MC2=MB2+BC2,
    即(2+x)2=62+x2,
    解得:x=2,
    即BC=2,
    故选:B.
    【点睛】
    本题考查了切线的性质和判定,圆周角定理,勾股定理等知识点,能综合运用定理进行推理是解此题的关键.
    7、B
    【解析】
    【分析】
    ⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
    【详解】
    解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
    则∠CDI=∠C=∠CFI=90°,ID=IF=1,
    ∴四边形CDIF是正方形,
    ∴CD=CF=1,
    由切线长定理得:AD=AE,BE=BF,CF=CD,
    ∵直角三角形的外接圆半径为3,内切圆半径为1,
    ∴AB=6=AE+BE=BF+AD,
    即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
    故选:B.

    【点睛】
    本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
    8、B
    【解析】
    【分析】
    求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.
    【详解】
    解:∵正五边形ABCDE中,
    ∴∠BCD==108°,CB=CD,
    ∴∠CBD=∠CDB=(180°-108°)=36°,
    故选:B.
    【点睛】
    本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.
    9、D
    【解析】
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    10、C
    【解析】
    【分析】
    连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.
    【详解】
    解:连接OC,

    ∵DC切⊙O于点C,
    ∴∠OCD=90°,
    ∵∠A=20°,
    ∴∠OCA=20°,
    ∴∠DOC=40°,
    ∴∠D=90°-40°=50°.
    故选:C.
    【点睛】
    本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.
    二、填空题
    1、点在圆内
    【解析】
    【分析】
    比较点到圆心的距离d与半径r的大小关系;当时,点在圆外;当时,点在圆上;当时,点在圆内;求值后进行判断即可.
    【详解】
    解:的半径为,点A到圆心的距离为

    点A与的位置关系是:点A在圆内
    故答案为:点A在圆内.
    【点睛】
    本题考查了点与圆的位置关系.解题的关键在于比较点到圆心的距离d与半径r的大小关系.
    2、相切
    【解析】
    【分析】
    本题应将原点到直线x=3的距离与半径对比即可判断.
    【详解】
    解:∵原点到直线x=3的距离为3,半径为3,
    则有3=3,
    ∴这个圆与直线x=3相切.
    故答案为:相切.
    【点睛】
    本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.
    3、外
    【解析】
    【分析】
    点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.据此作答.
    【详解】
    解:∵⊙O的半径为3cm,点A到圆心O的距离OA为4cm,
    即点A到圆心的距离大于圆的半径,
    ∴点A在⊙O外.
    故答案为:外.
    【点睛】
    本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
    4、6
    【解析】
    【分析】
    直接利用正三角形的性质得出BO=2DO=2,再由勾股定理求出BD的长即可解决问题.
    【详解】
    解:如图所示:连接BO,

    由题意可得,OD⊥BC,OD=,∠OBD=30°,
    故BO=2DO=2.BC=2BD
    由勾股定理得,

    故答案为:6.
    【点睛】
    此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.
    5、65
    【解析】
    【分析】
    连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.
    【详解】
    解:如图所示:连接OA,OC,OB,

    ∵PA、PB、DE与圆相切于点A、B、E,
    ∴,,,
    ∵,
    ∴,
    ∵,
    ∴DO平分,EO平分,
    ∴,,
    ∴,,
    ∴,
    故答案为:65.
    【点睛】
    题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
    三、解答题
    1、 (1)BP=2
    (2)①4.8;②9.6
    【解析】
    【分析】
    (1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
    (2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
    (1)
    连接PT,如图:

    ∵⊙P与AD相切于点T,
    ∴∠ATP=90°,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∴四边形ABPT是矩形,
    ∴PT=AB=4=PE,
    ∵E是AB的中点,
    ∴BE=AB=2,
    在Rt△BPE中,;
    (2)
    ①∵⊙P与CD相切,
    ∴PC=PE,
    设BP=x,则PC=PE=10-x,
    在Rt△BPE中,BP2+BE2=PE2,
    ∴x2+22=(10-x)2,
    解得x=4.8,
    ∴BP=4.8;
    ②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:

    由题可知,EM是△ABQ的中位线,
    ∴EM∥BQ,
    ∴∠BEM=90°=∠B,
    ∵PN⊥EM,
    ∴∠PNE=90°,EM=2EN,
    ∴四边形BPNE是矩形,
    ∴EN=BP=4.8,
    ∴EM=2EN=9.6.
    故答案为:9.6.
    【点睛】
    本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
    2、 (1)见解析
    (2)见解析
    (3)⊙O的半径为5.
    【解析】
    【分析】
    (1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
    (2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
    (3)根据垂径定理和勾股定理即可求出结果.
    (1)
    证明:连接OD交BC于H,如图,

    ∵点E是△ABC的内心,
    ∴AD平分∠BAC,
    即∠BAD=∠CAD,
    ∴,
    ∴OD⊥BC,BH=CH,
    ∵DM∥BC,
    ∴OD⊥DM,
    ∴DM是⊙O的切线;
    (2)
    证明:∵点E是△ABC的内心,

    ∴∠ABE=∠CBE,
    ∵,
    ∴∠DBC=∠BAD,
    ∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
    即∠BED=∠DBE,
    ∴BD=DE;
    (3)
    解:设⊙O的半径为r,
    连接OD,OB,如图,

    由(1)得OD⊥BC,BH=CH,
    ∵BC=8,
    ∴BH=CH=4,
    ∵DE=2,BD=DE,
    ∴BD=2,
    在Rt△BHD中,BD2=BH2+HD2,
    ∴(2)2=42+HD2,解得:HD=2,
    在Rt△BHO中,
    r2=BH2+(r-2)2,解得:r=5.
    ∴⊙O的半径为5.
    【点睛】
    本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.
    3、 (1)见解析
    (2)见解析
    (3)
    【解析】
    【分析】
    (1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;
    (2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证;
    (3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.
    (1)
    连接OC,如图,

    ∵AB是的直径,

    即.
    ,,


    .

    .

    又是半径,
    是⊙O的切线.
    (2)
    由(1),得.

    .


    平分,
    .
    又,
    ,即.

    .
    (3)
    作于点F,如图,


    平分,,

    ,由勾股定理得:.
    ,,

    .

    .
    设,

    .
    解得或(舍去).

    Rt△ACF中,由勾股定理得:,
    ,.
    由(2)得,
    .
    ,,



    【点睛】
    本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.
    4、 (1)见解析
    (2)cm
    【解析】
    【分析】
    (1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
    (2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
    ①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
    ②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
    (1)
    解:如图,

    (2)
    解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
    ①∵,∴设AC=3x,AB=5x,
    ∴BC==4x,
    ∵的周长为12cm,
    ∴3x+4x+5x=12,
    ∴x=1,
    ∴AC=3,AB=5,
    ∵⊙O 与 AB 、 BC 所在直线相切
    ∴BE=BC=4,
    ∴AE=AB-BE=5-4=1,AO=3-r,
    在Rt△AOE中,
    ∵AO2=AE2+OE2,
    ∴(3-r)2=12+r2,
    ∴r=;

    ②∵,∴设AC=3x,AB=5x,
    ∴BC==4x,
    ∵,
    ∴4x=12,
    ∴x=1,
    ∴AC=3,AB=5,
    ∵⊙O 与 AB 、 BC 所在直线相切
    ∴BE=BC=4,
    ∴AE=AB-BE=5-4=1,AO=3-r,
    在Rt△AOE中,
    ∵AO2=AE2+OE2,
    ∴(3-r)2=12+r2,
    ∴r=;
    即⊙O的半径为cm.
    【点睛】
    本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.
    5、 (1)见解析
    (2)4
    【解析】
    【分析】
    (1)连接OD,根据题意和平行四边形的性质可得DE∥CG,可得OD⊥DE,即可求解;
    (2)设⊙O的半径为r,因为∠GOD=90°,根据勾股定理可求解r,当r=2时,OG=5,此时点G在⊙O外,不合题意,舍去,可求解.
    (1)
    证明:连接OD,

    ∵∠ACB=90°,AC=BC,
    ∴∠ABC=45°,
    ∴∠COD=2∠ABC=90°,
    ∵四边形GDEC是平行四边形,
    ∴DE∥CG,
    ∴∠ODE+∠COD=180°,
    ∴∠ODE=90°,即OD⊥DE,
    ∵OD是半径,
    ∴直线DE是⊙O的切线;
    (2)
    解:设⊙O的半径为r,
    ∵四边形GDEC是平行四边形,
    ∴CG=DE=7,DG=CE=5,
    ∵∠GOD=90°,
    ∴OD2+OG2=DG2,即r2+(7﹣r)2=52,
    解得:r1=3,r2=4,
    当r=3时,OG=4>3,此时点G在⊙O外,不合题意,舍去,
    ∴r=4,即⊙O的半径4.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.

    相关试卷

    数学九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练:

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练,共28页。试卷主要包含了如图,A,已知M等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品测试题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品测试题,共36页。

    2020-2021学年第29章 直线与圆的位置关系综合与测试精品测试题:

    这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品测试题,共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map