初中冀教版第十一章 因式分解综合与测试达标测试
展开
这是一份初中冀教版第十一章 因式分解综合与测试达标测试,共15页。试卷主要包含了多项式分解因式的结果是,下列多项式不能因式分解的是,把多项式分解因式,其结果是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.2、若、、为一个三角形的三边长,则式子的值( )A.一定为正数 B.一定为负数 C.可能是正数,也可能是负数 D.可能为03、下列因式分解正确的是( )A. B.C. D.4、多项式分解因式的结果是( )A. B.C. D.5、下列多项式不能因式分解的是( )A. B. C. D.6、下列多项式中,不能用公式法因式分解的是( )A. B. C. D.7、下列等式中,从左到右是因式分解的是( )A. B.C. D.8、把多项式分解因式,其结果是( )A. B.C. D.9、已知关于x的二次三项式分解因式的结果是,则代数式的值为( )A.-3 B.-1 C.- D.10、下列各式从左到右的变形中,是因式分解且完全正确的是( )A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x﹣3=x(x﹣2)﹣3C.x2﹣4x+4=(x﹣2)2 D.x3﹣x=x(x2﹣1)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a,b都是有理数,且满足a2+b2+5=4a﹣2b,则(a+b)2021=_____.2、分解因式:=______.3、在实数范围内分解因式:x2﹣3xy﹣y2=___.4、因式定理:对于多项式,若,则是的一个因式,并且可以通过添减单项式从中分离出来.例如,由于,所以是的一个因式.于是.则______.5、在○处填入一个整式,使关于的多项式可以因式分解,则○可以为________.(写出一个即可)三、解答题(5小题,每小题10分,共计50分)1、因式分解:2、分解因式:(1);(2).3、分解因式:.4、将下列各式分解因式:(1); (2)5、因式分解:(1)3a2﹣27;(2)m3﹣2m2+m. -参考答案-一、单选题1、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式逐项判断即可.【详解】解: A选项的右边不是积的形式,不是因式分解,故不符合题意;B选项的右边不是积的形式,不是因式分解,故不符合题意;C选项的右边不是积的形式,不是因式分解,故不符合题意;D选项的右边是积的形式,是因式分解,故符合题意,故选:D.【点睛】本题考查因式分解,熟知因式分解是把一个多项式化为几个整式的积的形式是解答的关键.2、B【解析】【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】解:原式=(a-c+b)(a-c-b),∵两边之和大于第三边,两边之差小于第三边,∴a-c+b>0,a-c-b<0,∵两数相乘,异号得负,∴代数式的值小于0.故选:B.【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.3、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、B【解析】【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.5、A【解析】【分析】根据平方差公式、完全平方公式分解因式即可.【详解】解:A、不能因式分解,符合题意;B、=,能因式分解,不符合题意;C、=,能因式分解,不符合题意;D、 =,能因式分解,不符合题意,故选:A.【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,掌握因式分解的结构特征是解答的关键.6、D【解析】【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.7、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.8、B【解析】【分析】因为−6×9=−54,−6+9=3,所以利用十字相乘法分解因式即可.【详解】解:x2+3x−54=(x−6)(x+9);故选:B.【点睛】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.9、C【解析】【分析】根据因式分解与整式乘法的关系,可求得a与b的值,从而可求得结果的值.【详解】则,∴故选:C【点睛】本题考查了因式分解与整式乘法的关系,负整数指数幂的意义,掌握因式分解与整式乘法的关系是本题的关键.10、C【解析】【分析】根据因式分解的定义逐项分析即可.【详解】A.(x+2)(x﹣2)=x2﹣4是乘法运算,故不符合题意;B.x2﹣2x﹣3=x(x﹣2)﹣3的右边不是积的形式,故不符合题意;C.x2﹣4x+4=(x﹣2)2是因式分解,符合题意;D.x3﹣x=x(x2﹣1)=x(x+1)(x-1),原式分解不彻底,故不符合题意;故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.二、填空题1、1【解析】【分析】首先利用完全平方公式得出a,b的值,进而得出答案.【详解】解:∵a2+b2+5=4a﹣2b,∴ ,∴(a﹣2)2+(b+1)2=0,∴a=2,b=﹣1,∴(a+b)2021=(2﹣1)2021=1.故答案为:1【点睛】本题主要考查了完全平方公式的应用,熟练掌握 ,是解题的关键.2、##【解析】【分析】根据公式法因式分解即可【详解】解:=故答案为:【点睛】本题考查了公式法分解因式,掌握公式法因式分解是解题的关键.3、【解析】【分析】先利用配方法,再利用平方差公式即可得.【详解】解:===.故答案为:.【点睛】本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.4、【解析】【分析】将添减单项式后分解因式即可得到答案.【详解】解: ===故答案为:.【点睛】此题考查了多项式的分解因式,正确添减单项式利用分组分解法分解因式是解题的关键.5、2x【解析】【分析】可根据完全平方公式或提公因数法分解因式求解即可.【详解】解:∵,∴○可以为2x、-2x、2x-1等,答案不唯一,故答案为:2x.【点睛】本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键.三、解答题1、【解析】【分析】直接提取公因式xy,再利用完全平方公式分解因式得出答案【详解】解:【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.2、 (1)(2)【解析】【分析】(1)提取公因式,然后用完全平方公式进行化简即可.(2)提取公因式,然后用平方差公式进行化简即可.(1)解:原式;(2)解:原式.【点睛】本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.3、.【解析】【分析】先将因式进行分组为,再综合利用提公因式法和平方差公式分解因式即可得.【详解】解:原式.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.4、(1);(2)【解析】【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可.【详解】解:(1)==;(2)= =.【点睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.5、 (1)3(a+3)(a-3)(2)m(m-1)2【解析】【分析】(1)先提公因式3,再利用平方差公式分解因式即可;(2)先提公因式m,再利用完全平方公式分解因式即可.【小题1】解:原式=3(a2-9)=3(a+3)(a-3);【小题2】原式=m(m2-2m+1)=m(m-1)2.【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十一章 因式分解综合与测试课堂检测,共16页。试卷主要包含了对于有理数a,b,c,有,下列多项式中有因式x﹣1的是,下列因式分解正确的是,已知实数x,y满足,如图,长与宽分别为a等内容,欢迎下载使用。
这是一份初中冀教版第十一章 因式分解综合与测试同步练习题,共18页。试卷主要包含了下列变形,属因式分解的是,下列各式中,正确的因式分解是,已知,,求代数式的值为等内容,欢迎下载使用。