初中数学第十一章 因式分解综合与测试达标测试
展开这是一份初中数学第十一章 因式分解综合与测试达标测试,共17页。试卷主要包含了下列分解因式正确的是,分解因式2a2,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式从左到右的变形属于因式分解的是( )
A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3y
C.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)
2、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
3、下列从左到右的变形属于因式分解的是( )
A.x2+2x+1=x(x+2)+1 B.﹣7ab2c3=﹣abc•7bc2
C.m(m+3)=m2+3m D.2x2﹣5x=x(2x﹣5)
4、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).A.勤学 B.爱科学 C.我爱理科 D.我爱科学
5、把多项式x3﹣2x2+x分解因式结果正确的是( )
A.x(x2﹣2x) B.x2(x﹣2)
C.x(x+1)(x﹣1) D.x(x﹣1)2
6、下列各式能用完全平方公式进行分解因式的是( )
A.x2+1 B.x2+2x﹣1 C.x2+3x+9 D.
7、下列分解因式正确的是( )
A. B.
C. D.
8、分解因式2a2(x-y)+2b2(y-x)的结果是( )
A.(2a2+2b2) (x-y) B.(2a2-2b2) (x-y)
C.2(a2-b2) (x-y) D.2(a-b)(a+b)(x-y)
9、下列多项式中有因式x﹣1的是( )
①x2+x﹣2;②x2+3x+2;③x2﹣x﹣2;④x2﹣3x+2
A.①② B.②③ C.②④ D.①④
10、若、、为一个三角形的三边长,则式子的值( )
A.一定为正数 B.一定为负数 C.可能是正数,也可能是负数 D.可能为0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若a-b=2,a2-b2=6,则a2+b2=______.
2、在○处填入一个整式,使关于的多项式可以因式分解,则○可以为________.(写出一个即可)
3、因式分解:________.
4、把多项式2a3﹣2a分解因式的结果是___.
5、分解因式:______.
三、解答题(5小题,每小题10分,共计50分)
1、把下列多项式分解因式:
(1)
(2)
2、阅读下面材料:小颖这学期学习了轴对称的知识,知道了像角、等腰三角形、正方形、圆等图形都是轴对称图形,类比这一特性,小颖发现像等代数式,如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是她把这样的式子命名为神奇对称式,她还发现像等神奇对称式都可以用表示.例如:,.于是小颖把和称为基本神奇对称式,请根据以上材料解决下列问题:
(1)①,②,③,④中,属于神奇对称式的是_______(填序号);
(2)已知.
①若,则神奇对称式_______;
②若,求神奇对称式的最小值.
3、(1)整式乘法:(2a2b)3;
(2)分解因式:x3-2x2+x
4、分解因式:
(1);
(2).
5、因式分解:
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.
【详解】
解:A、是整式的乘法,故此选项不符合题意;
B、不属于因式分解,故此选项不符合题意;
C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;
D、把一个多项式转化成几个整式积的形式,故此选项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.
2、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
3、D
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.
【详解】
解:A.x2+2x+1=(x+1)2,故A不符合题意;
B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;
C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;
D.2x2-5x=x(2x-5)是因式分解,故D符合题意;
故选:D.
【点睛】
本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.
4、C
【解析】
【分析】
利用平方差公式,将多项式进行因式分解,即可求解.
【详解】
解:
∵、、、依次对应的字为:科、爱、我、理,
∴其结果呈现的密码信息可能是我爱理科.
故选:C
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
5、D
【解析】
【分析】
先提取公因式,再按照完全平方公式分解即可得到答案.
【详解】
解:x3﹣2x2+x
故选D
【点睛】
本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.
6、D
【解析】
【分析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.
【详解】
解:A、x2+1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
C、x2+3x+9不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
D、,故选项正确;
故选:D
【点睛】
本题考查了完全平方式的运用分解因式,关键是熟练掌握完全平方式的特点.
7、C
【解析】
【分析】
根据因式分解的方法逐个判断即可.
【详解】
解:A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,正确,符合题意;
D. ,原选项错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.
8、D
【解析】
【分析】
根据提公因式法和平方差公式分解因式.
【详解】
解:2a2(x-y)+2b2(y-x)
=2a2(x-y)-2b2(x-y)
=(2a2-2b2)(x-y)
=2(a2-b2)(x-y)
=2(a-b)(a+b)(x-y).
故选:D.
【点睛】
此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.
9、D
【解析】
【分析】
根据十字相乘法把各个多项式因式分解即可判断.
【详解】
解:①x2+x﹣2=;
②x2+3x+2=;
③x2﹣x﹣2=;
④x2﹣3x+2=.
∴有因式x﹣1的是①④.
故选:D.
【点睛】
本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.
10、B
【解析】
【分析】
先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.
【详解】
解:原式=(a-c+b)(a-c-b),
∵两边之和大于第三边,两边之差小于第三边,
∴a-c+b>0,a-c-b<0,
∵两数相乘,异号得负,
∴代数式的值小于0.
故选:B.
【点睛】
本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.
二、填空题
1、##6.5
【解析】
【分析】
根据平方差公式求出a+b=3,解方程组,求出解代入计算即可.
【详解】
解:∵a-b=2,a2-b2=6,a2-b2=(a+b)(a-b)
∴a+b=3,
解方程组,得,
∴a2+b2=,
故答案为:.
【点睛】
此题考查了平方差公式的应用,解二元一次方程组,已知字母的值求代数式的值,正确掌握平方差公式是解题的关键.
2、2x
【解析】
【分析】
可根据完全平方公式或提公因数法分解因式求解即可.
【详解】
解:∵,
∴○可以为2x、-2x、2x-1等,答案不唯一,
故答案为:2x.
【点睛】
本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键.
3、m(m+1)(m﹣1).
【解析】
【分析】
原式提取m,再利用平方差公式分解即可.
【详解】
解:原式=m(m2﹣12)
=m(m+1)(m﹣1).
故答案为:m(m+1)(m﹣1).
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
4、
【解析】
【分析】
直接利用提取公因式法分解因式,进而利用平方差公式分解因式即可.
【详解】
解:2a3﹣2a
=
=;
故答案为2a(a+1)(a-1)
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
5、
【解析】
【分析】
首先提公因式3x,然后利用完全平方公式因式分解即可分解.
【详解】
解:.
故答案为:.
【点睛】
本题考查了提公因式法与公式法分解因式,掌握因式分解的方法与步骤,熟记公式是解题关键.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)先提取公因式3x,然后利用平方差公式分解因式即可;
(2)先提取公因式-5a,然后利用完全平方公式分解因式即可.
【详解】
(1)
;
(2)
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.
2、 (1)①④
(2)①;②
【解析】
【分析】
(1)神奇对称式是指任意交换两个字母的位置,式子的值都不变的代数式;由定义可知,交换①②③中④中、、的位置,若值不变则符合题意.
(2)①将代入中求得的值,代入求解即可.②将代入中求得的值,由求出的取值范围;将进行配方得将的最小值代入即可.
(1)
解:将①②③中交换位置可得
①,符合题意;
②,不符合题意;
③,不符合题意;
④交换的位置,同理交换其他两个仍成立,符合题意;
故答案为:①④.
(2)
解:①
或
代入得
故答案为:.
②,
有
或
∴神奇对称式的最小值为.
【点睛】
本题考查了因式分解,完全平方公式,不等式等知识.解题的关键在于因式分解得到m、n的关系,不等式求出代数式m+n的取值范围,配完全平方表示出所求代数式的形式.
3、(1)8a6b3;(2)x(x-1)2
【解析】
【分析】
(1)根据整式的运算法则即可求出答案;
(2)先提公因式,再利用完全平方公式分解因式即可.
【详解】
解:(1)原式=;
(2)原式=.
【点睛】
本题考查了整式的混合运算及因式分解,解题的关键是熟练运用整式的运算法则及完全平方公式分解因式,本题属于基础题型.
4、 (1)
(2)
【解析】
【分析】
(1)提取公因式,然后用完全平方公式进行化简即可.
(2)提取公因式,然后用平方差公式进行化简即可.
(1)
解:原式;
(2)
解:原式
.
【点睛】
本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.
5、
【解析】
【分析】
根据题意综合运用提取公因式法和公式法进行因式分解即可得出答案.
【详解】
解:
【点睛】
本题考查因式分解,熟练掌握并运用提取公因式法和公式法进行因式分解是解题的关键.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题,共18页。试卷主要包含了下列因式分解正确的是,已知,,求代数式的值为,把多项式分解因式,其结果是,已知实数x,y满足等内容,欢迎下载使用。
这是一份初中数学第十一章 因式分解综合与测试同步训练题,共19页。试卷主要包含了已知实数x,y满足,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试课后复习题,共16页。试卷主要包含了下列变形,属因式分解的是,下列因式分解错误的是等内容,欢迎下载使用。