![2022年最新冀教版七年级数学下册第十一章 因式分解难点解析试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12719490/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版七年级数学下册第十一章 因式分解难点解析试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12719490/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版七年级数学下册第十一章 因式分解难点解析试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12719490/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第十一章 因式分解综合与测试当堂达标检测题
展开
这是一份初中数学第十一章 因式分解综合与测试当堂达标检测题,共18页。
冀教版七年级数学下册第十一章 因式分解难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解中,正确的是( )A. B.C. D.2、下列多项式中能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.x2+(﹣y)2C.(﹣x)2+(﹣y)2 D.﹣m2+13、下列各式因式分解正确的是( )A. B.C. D.4、下列等式中,从左到右的变形是因式分解的是( )A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)5、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.6、下列各式中,能用完全平方公式分解因式的是( )A. B.C. D. 7、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.8、下列等式从左到右的变形,属于因式分解的是( )A. B.C. D.9、下列由左到右的变形,属于因式分解的是( )A. B.C. D.10、已知a2(b+c)=b2(a+c)=2021,且a、b、c互不相等,则c2(a+b)﹣2020=( )A.0 B.1 C.2020 D.2021第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a+b=4,ab=1,则a3b+2a2b2+ab3的值为________________.2、分解因式:________.3、分解因式:25x2﹣16y2=_____.4、已知a2+a-1=0,则a3+2a2+2021=________.5、因式分解:______.三、解答题(5小题,每小题10分,共计50分)1、已知xy=5,x2y﹣xy2﹣x+y=40.(1)求x﹣y的值.(2)求x2+y2的值.2、在“整式乘法与因式分解”这一章的学习过程中,我们常采用构造几何图形的方法对代数式的变形加以说明.例如,利用图中边长分别为a,b的正方形,以及长为a,宽为b的长方形卡片若干张拼成图2(卡片间不重叠、无缝隙),可以用来解释完全平方公式:.请你解答下面的问题:(1)利用图1中的三种卡片若干张拼成图,可以解释等式:_____________;(2)利用图1中三种卡片若干张拼出一个面积为的长方形ABCD,请你分析这个长方形的长和宽.3、若一个正整数a可以表示为a=(b+1)(b-2),其中b为大于2的正整数,则称a为“十字数”,b为a的“十字点”.例如28=(6+1)×(6-2)=7×4.(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;(2)若b是a的“十字点”,且a能被(b-1)整除,其中b为大于2的正整数,求a.4、因式分解:(y2﹣y)2﹣14(y2﹣y)+24.5、 ((1)(2)小题计算,(3)(4)小题因式分解)(1);(2)(x﹣2y)(3x+2y)﹣;(3)9(x﹣y)+4(y﹣x) ; (4) a+2x+. -参考答案-一、单选题1、D【解析】【分析】A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.【详解】解:A、原式,不符合题意;B、原式,不符合题意;C、原式不能分解,不符合题意;D、原式,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D.【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.3、B【解析】【分析】根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.【详解】解:A、不能进行因式分解,错误;B、选项正确,是因式分解;C、选项是整式的乘法,不是因式分解,不符合题意;D、,选项因式分解错误;故选:B.【点睛】题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.4、D【解析】【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.5、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.6、D【解析】【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.7、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).8、B【解析】【分析】根据因式分解的定义直接判断即可.【详解】解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; B.等式从左到右的变形属于因式分解,故本选项符合题意;C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D.属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.9、A【解析】【分析】直接利用因式分解的定义分别分析得出答案.【详解】解:、,是因式分解,符合题意.、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A.【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.10、B【解析】【分析】根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案.【详解】解:∵a2(b+c)=b2(a+c).∴a2b+a2c﹣ab2﹣b2c=0.∴ab(a﹣b)+c(a+b)(a﹣b)=0.∴(a﹣b)(ab+ac+bc)=0.∵a≠b.∵a2(b+c)=2021.∴a(ab+ac)=2021.∴a(﹣bc)=2021.∴﹣abc=2021.∴abc=﹣2021.∴原式=c(ac+bc)﹣2020=c(﹣ab)﹣2020=﹣abc﹣2020=2021﹣2020=1.故选:B.【点睛】本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键.二、填空题1、16【解析】【分析】先提取公因式ab,然后再用完全平方公式因式分解,最后代入计算即可.【详解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=1×42=16.故答案是16.【点睛】本题主要考查了因式分解的应用,掌握运用提取公因式法和完全平方公式因式分解是解答本题的关键.2、【解析】【分析】先提取公因式-a,再用完全平方公式分解因式得出答案.【详解】解:,故答案为:【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.3、##【解析】【分析】利用平方差公式计算即可.【详解】解:原式==,故答案为:.【点睛】本题考查了利用平方差公式分解因式,掌握平方差公式的特征是解题的关键.4、2022【解析】【分析】将已知条件变形为a2=1-a、a2+a=1,然后将代数式a3+2a2+2021进一步变形进行求解.【详解】解:∵a2+a-1=0,∴a2=1-a、a2+a=1,∴a3+2a2+2021,=a•a2+2(1-a)+2021,=a(1-a)+2-2a+2021,=a-a2-2a+2023,=-a2-a+2023,=-(a2+a)+2023,=-1+2023=2022.故答案为:2022【点睛】本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式的运用,提公因式法的运用.5、【解析】【分析】先提公因式,再利用平方差公式即可;【详解】故答案为:.【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.三、解答题1、(1)x﹣y=10;(2)x2+y2=110.【解析】【分析】(1)利用提取公因式法对(x2y﹣xy2﹣x+y)进行因式分解,代入求值即可.(2)利用完全平方公式进行变形处理得到:x2+y2=(x﹣y)2+2xy,代入求值即可.【详解】解:(1)∵xy=5,x2y﹣xy2﹣x+y=40,∴x2y﹣xy2﹣x+y=xy(x﹣y)﹣(x﹣y)=(xy﹣1)(x﹣y)∵xy=5,∴(5﹣1)(x﹣y)=40,∴x﹣y=10.(2)x2+y2=(x﹣y)2+2xy=102+2×5=110.【点睛】本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2=(x﹣y)2+2xy.2、 (1)(2)长为,宽为.【解析】【分析】(1)根据图形,有直接求和间接求两种方法,列出等式即可;(2)根据已知等式画出相应的图形,然后根据图形写出等式即可.(1)解: (2)解:答:由图形可知,长为,宽为.【点睛】此题考查了因式分解的应用,面积与代数式恒等式的关系,熟练掌握运算法则是解本题的关键.3、解:原式=5x(x2﹣4xy+4y2)=5x(x﹣2y)【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.也考查了整式的混合运算.2.(1)40,12(2)4【解析】【分析】(1)根据定义解答即可;(2)根据b是a的十字点,写出a的表达式,因为a能被(b-1)整除,所以对表达式进行变形,得到(b-1)能整除2,求出b的值,进而得到a的值.(1)十字点为7的十字数a=(7+1)(7﹣2)=8×5=40,∵130=(12+1)(12﹣2)=13×10,∴130的十字点为12.故答案为:40,12;(2)∵b是a的十字点,∴a=(b+1)(b﹣2)(b>2且为正整数),∴a=(b﹣1+2)(b﹣1﹣1)=(b﹣1)2+(b﹣1)﹣2,∵a能被(b﹣1)整除,∴(b﹣1)能整除2,∴b﹣1=1或b﹣1=2,∵b>2,∴b=3,∴a=(3+1)(3﹣2)=4.【点睛】本题考查了因式分解的应用,有一定的技巧性,解题的关键是看懂定义,根据题中的条件进行变形.4、(y﹣2)(y+1)(y﹣4)(y+3)【解析】【分析】将看做整体,再十字相乘法因式分解,注意分解要彻底.【详解】原式=(y2﹣y﹣2)(y2﹣y﹣12)=(y﹣2)(y+1)(y﹣4)(y+3).【点睛】本题考查了因式分解,掌握十字分解法是解题的关键.5、(1)-5;(2)2﹣8;(3);(4)a【解析】【分析】(1)根据=2, ,整理计算即可;(2)利用多项式的乘法法则,完全平方公式展开,合并同类项即可;(3)根据(y-x)=-(x-y),提取公因式后,套用平方差公式分解即可;(4) 先提取公因式a,后套用和的完全平方公式分解即可.【详解】解:(1) =2+1-9+1=-5;(2)(x﹣2y)(3x+2y)﹣=3+2xy﹣6xy﹣4﹣+4xy﹣4=2﹣8;(3)9(x﹣y)+4(y﹣x)= =;(4)a+2x+=a(+2ax+)=a.【点睛】本题考查了绝对值,零指数幂,负整数指数幂,完全平方公式,因式分解,熟练掌握零指数幂,负整数指数幂,完全平方公式和公式法分解因式是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试达标测试,共17页。试卷主要包含了下列因式分解正确的是,如图,长与宽分别为a,下列变形,属因式分解的是等内容,欢迎下载使用。
这是一份初中冀教版第十一章 因式分解综合与测试随堂练习题,共18页。试卷主要包含了下列因式分解正确的是,下列各式中,正确的因式分解是等内容,欢迎下载使用。
这是一份初中第十一章 因式分解综合与测试课时训练,共17页。试卷主要包含了分解因式2a2,下列因式分解正确的是,下列多项式,已知实数x,y满足等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)