初中数学冀教版七年级下册第十一章 因式分解综合与测试达标测试
展开冀教版七年级数学下册第十一章 因式分解章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列因式分解错误的是( )
A.3x-3y=3(x-y) B.x2-4=(x+2)(x-2)
C.x2+6x-9=(x+9)2 D.-x2-x+2=-(x-1)(x+2)
2、下列各式中,能用完全平方公式分解因式的是( )
A. B.
C. D.
3、把多项式x3﹣2x2+x分解因式结果正确的是( )
A.x(x2﹣2x) B.x2(x﹣2)
C.x(x+1)(x﹣1) D.x(x﹣1)2
4、下列多项式不能用公式法因式分解的是( )
A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣1
5、下列因式分解正确的是( )
A. B.
C. D.
6、如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )
A.2560 B.490 C.70 D.49
7、下列因式分解正确的是( )
A. B.
C. D.
8、下列变形,属因式分解的是( )
A. B.
C. D.
9、下列因式分解正确的是( )
A.a2+1=a(a+1) B.
C.a2+a﹣5=(a﹣2)(a+3)+1 D.
10、已知,,求代数式的值为( )
A.18 B.28 C.50 D.60
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式a2-10a+25的结果是______.
2、把多项式x2﹣6x+m分解因式得(x+3)(x﹣n),则m+n的值是______.
3、若,则代数式的值等于______.
4、把多项式ax2-2axy+ay2分解因式的结果是____.
5、因式分解:xy2﹣4x=_____;因式分解(a﹣b)2+4ab=_____.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式
(1);
(2).
2、把下列各式分解因式:
(1)x2+3x﹣4;
(2)a3b﹣ab;
(3)3ax2﹣6axy+3ay2.
3、分解因式:.
4、在学习自然数时,我们发现一种特殊的自然数—“三顺数”.
定义1:对于四位自然数n,若千位数字为6,各个数位数字均不为0,能被6整除,且数n的各个数位数字之和也恰好能被6整除,则称这个自然数n为“三顺数”.
例如:6336是“三顺数”,因为6336÷6=1056,且(6+3+3+6)÷6=3;6216不是“三顺数”,因为6216÷6=1036,但6+2+1+6=15不能被6整除.
定义2:将任意一个“三顺数”n的前两位数字与后两位数字交换,交换后得到一个新的四位数n′,规定:T(n)=.
(1)判断6426,6726是否为“三顺数”,并说明理由;
(2)若n是一个“三顺数”,它的百位数字比十位数字的2倍小2,求T(n)的最大值.
5、已知,.
求:(1)的值;
(2)的值.
-参考答案-
一、单选题
1、C
【解析】
【分析】
提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.
【详解】
解:显然对于A,B,D正确,不乖合题意,
对于C:右边≠左边,故C错误,符合题意;
故选:C.
【点睛】
本题考查了因式分解,熟练掌因式分解的方法是解题的关键.
2、D
【解析】
【分析】
根据完全平方公式法分解因式,即可求解.
【详解】
解:A、不能用完全平方公式因式分解,故本选项不符合题意;
B、不能用完全平方公式因式分解,故本选项不符合题意;
C、不能用完全平方公式因式分解,故本选项不符合题意;
D、能用完全平方公式因式分解,故本选项符合题意;
故选:D
【点睛】
本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.
3、D
【解析】
【分析】
先提取公因式,再按照完全平方公式分解即可得到答案.
【详解】
解:x3﹣2x2+x
故选D
【点睛】
本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.
4、C
【解析】
【分析】
直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.
【详解】
解:A中,故此选项不合题意;
B中,故此选项不合题意;
C中无法分解因式,故此选项符合题意;
D中,故此选项不合题意;
故选:C.
【点睛】
本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.
5、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.
【详解】
解:A、,错误,故该选项不符合题意;
B、,错误,故该选项不符合题意;
C、,正确,故该选项符合题意;
D、,不能进行因式分解,故该选项不符合题意;
故选:C.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
6、B
【解析】
【分析】
利用面积公式得到ab=10,由周长公式得到a+b=7,所以将原式因式分解得出ab(a+b)2.将其代入求值即可.
【详解】
解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,
∴ab=10,a+b=7,
∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.
故选:B.
【点睛】
本题主要考查了因式分解和代数式求值,准确计算是解题的关键.
7、B
【解析】
【分析】
直接利用提取公因式法以及十字相乘法分解因式,进而判断即可.
【详解】
解:A、,故此选项不合题意;
B、,故此选项符合题意;
C、,故此选项不合题意;
D、,不能分解,故此选项不合题意;
故选:B.
【点睛】
本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
8、A
【解析】
【分析】
依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.
【详解】
解:A、是因式分解,故此选项符合题意;
B、分解错误,故此选项不符合题意;
C、右边不是几个整式的积的形式,故此选项不符合题意;
D、分解错误,故此选项不符合题意;
故选:A.
【点睛】
本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.
9、D
【解析】
【分析】
根据因式分解的定义严格判断即可.
【详解】
∵+1≠a(a+1)
∴A分解不正确;
∵,不是因式分解,
∴B不符合题意;
∵(a﹣2)(a+3)+1含有加法运算,
∴C不符合题意;
∵,
∴D分解正确;
故选D.
【点睛】
本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.
10、A
【解析】
【分析】
先利用提公因式法和完全平方公式对所求代数式因式分解,再整体代入求值即可.
【详解】
解:
=
=,
当,时,
原式=2×32=2×9=18,
故选:A.
【点睛】
本题考查代数式求值、因式分解、完全平方公式,熟记公式,熟练掌握因式分解的方法是解答的关键.
二、填空题
1、(a-5)2
【解析】
【分析】
直接用完全平方公式进行因式分解即可.
【详解】
a2-10a+25=(a-5)2
故答案为:(a-5)2.
【点睛】
此题考查了公式法分解因式,熟记完全平方公式是解本题的关键.
2、-18
【解析】
【分析】
根据题意列出等式,利用多项式相等的条件求出m与n的值,代入原式计算即可求出值.
【详解】
解:根据题意得:x2-6x+m=(x+3)(x-n)=x2+(3-n)x-3n,
∴3-n=-6,m=-3n,
解得:m=-27,n=9,
则原式=-27+9=-18,
故答案为:-18.
【点睛】
此题考查了因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键.
3、9
【解析】
【分析】
先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.
【详解】
解:∵,
∴,
∴
=
=
=
=
=9
故答案为:9.
【点睛】
本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.
4、
【解析】
【分析】
先提公因式,然后根据完全平方公式因式分解即可.
【详解】
解:原式=
=,
故答案为:
【点睛】
本题考查了提公因式法和公式法因式分解,熟练掌握完全平方公式的结构特点是解本题的关键.
5、 x(y+2)(y-2)##x(y-2)(y+2) (b+a)2##(a+b)2
【解析】
【分析】
原式提公因式x,再利用平方差公式分解即可;原式整理后,利用完全平方公式分解即可.
【详解】
解:xy2-4x
=x(y2-4)
=x(y+2)(y-2);
(a-b)2+4ab
=a2-2ab+b2+4ab
=a2+2ab+b2
=(a+b)2.
故答案为:x(y+2)(y-2);(a+b)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式时一定要分解彻底.
三、解答题
1、(1);(2).
【解析】
【分析】
(1)先提公因式,再根据平方差公式因式分解即可;
(2)先根据整式的乘法展开,进而根据完全平方公式因式分解即可
【详解】
解:(1)2x3﹣18xy2 =2x(x2﹣9y2)
=2x(x+3y )(x-3y)
(2)(a﹣b)(a﹣4b)+ab=a2﹣4ab-ab+4b2+ab
=a2﹣4ab+4b2
=(a﹣2b)2
【点睛】
本题考查了提公因式法因式分解和公式法因式分解,掌握因式分解的方法是解题的关键.
2、 (1)(x+4)(x﹣1)
(2)ab(a+1)(a﹣1)
(3)3a(x﹣y)2
【解析】
【分析】
(1)利用十字相乘法进行分解即可;
(2)先提公因式,然后再利用平方差公式继续分解即可;
(3)先提公因式,然后再利用完全平方公式继续分解即可;
(1)
解:x2+3x﹣4=(x+4)(x﹣1);
(2)
解:a3b﹣ab
=ab(a2﹣1)
=ab(a+1)(a﹣1);
(3)
解:3ax2﹣6axy+3ay2
=3a(x2﹣2xy+y2)
=3a(x﹣y)2;
【点睛】
本题考查了因式分解﹣十字相乘法,提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.
3、
【解析】
【分析】
先提取公因式y,再根据平方差公式进行二次分解即可求得答案.
【详解】
解:
故答案为:.
【点睛】
本题考查了提公因式法,公式法分解因式,解题的关键是注意分解要彻底.
4、 (1)6426是“三顺数”; 6726不是“三顺数”;理由见解析
(2)40
【解析】
【分析】
(1)根据“”三牛数的定义“求解.
(2)先表示n,n′和T(n),再求最值.
(1)
∵6426÷6=1071,且(6+4+2+6)÷6=3
∴6426是“三顺数”;
∵6726÷6=1121,且6+7+2+6=21不能被6整除
∴6726不是“三顺数”;
(2)
设n=,即这个四位数的百位,十位,个位数字分别为a,b,c.
∴n′=.
∴n=×100+,n′=×100+.
∴
=-.
当-最大时,T(n)最大,此时应该使b尽可能小.
①当b=1时,a=2b-2=0,不合题意;
②b=2时,a=2b-2=2,此时,.
6+2+2+c=10+c能被6整除,取c=2,n=6222.
6222÷6=1037.
∴T(n)的最大值=62-22=40.
【点睛】
本题考查用新定义解题,根据新定义,表示n,n′和T(n)是求解本题的关键.
5、(1)48;(2)52
【解析】
【分析】
(1)原式提取公因式,将已知等式代入计算即可求出值;
(2)原式利用完全平方公式变形后,将各自的值代入计算即可求出值.
【详解】
解:(1)∵,.
∴;
(2)∵,.
∴.
【点睛】
此题考查了因式分解,完全平方公式变形,代数式求值,熟练掌握因式分解方法,完全平方公式是解本题的关键.
冀教版七年级下册第十一章 因式分解综合与测试课后测评: 这是一份冀教版七年级下册第十一章 因式分解综合与测试课后测评,共15页。试卷主要包含了下列变形,属因式分解的是,下列各式从左至右是因式分解的是,下列各式中,不能因式分解的是等内容,欢迎下载使用。
初中第十一章 因式分解综合与测试课后作业题: 这是一份初中第十一章 因式分解综合与测试课后作业题,共17页。试卷主要包含了下列分解因式正确的是,下列因式分解正确的是,已知,,那么的值为,下列各式因式分解正确的是,下列多项式等内容,欢迎下载使用。
冀教版七年级下册第十一章 因式分解综合与测试达标测试: 这是一份冀教版七年级下册第十一章 因式分解综合与测试达标测试,共16页。试卷主要包含了已知,,那么的值为,当n为自然数时,等内容,欢迎下载使用。