![2022年必考点解析冀教版七年级数学下册第十一章 因式分解综合练习试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12719341/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版七年级数学下册第十一章 因式分解综合练习试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12719341/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析冀教版七年级数学下册第十一章 因式分解综合练习试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12719341/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第十一章 因式分解综合与测试当堂检测题
展开
这是一份2020-2021学年第十一章 因式分解综合与测试当堂检测题,共18页。试卷主要包含了下列多项式不能因式分解的是,下列多项式,因式分解等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、因式分解a2b﹣2ab+b正确的是( )A.b(a2﹣2a) B.ab(a﹣2) C.b(a2﹣2a+1) D.b(a﹣1)22、下列多项式中能用平方差公式分解因式的是( )A. B. C. D.3、若、、为一个三角形的三边长,则式子的值( )A.一定为正数 B.一定为负数 C.可能是正数,也可能是负数 D.可能为04、下列等式中,从左到右的变形是因式分解的是( )A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)5、下列多项式不能因式分解的是( )A. B. C. D.6、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )A.2个 B.3个 C.4个 D.5个7、下列式子从左到右的变形中,属于因式分解的是( )A. B.C. D.8、下列各式从左到右的变形中,属于因式分解的是( )A. B.C. D.9、因式分解:x3﹣4x2+4x=( )A. B. C. D.10、下列从左到右的变形,是分解因式的是( )A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:________.(直接写出结果)2、若,则代数式的值等于______.3、在实数范围内分解因式﹣64=___.4、分解因式:(a+b)2﹣(a+b)=_______.5、在实数范围内分解因式:x2﹣3xy﹣y2=___.三、解答题(5小题,每小题10分,共计50分)1、分解因式:2x3+12x2y+18xy2.2、材料1:对于一个四位自然数,如果满足各数位上的数字均不为,它的百位上的数字比千位上的数字大,个位上的数字比十位上的数字大,则称为“满天星数”.对于一个“满天星数”,同时将的个位数字交换到十位、十位数字交换到百位、百位数字交换到个位,得到一个新的四位数,规定:.例如:,因为,,所以是“满天星数”;将的个位数字交换到十位,将十位数字交换到百位,将百位数字交换到个位,得到,.材料2:对于任意四位自然数(、、、是整数且,),规定:.根据以上材料,解决下列问题:(1)请判断、是不是“满天星数”,请说明理由;如果是,请求出对应的的值;(2)已知、是“满天星数”,其中的千位数字为(是整数且),个位数字为;的百位数字为,十位数字为(是整数且).若能被整除且,求的值.3、问题提出:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6问题探究:为便于研究发现规律,我们可以将问题“一般化”,即将算式中特殊的数字3用具有一般性的字母a代替,原算式化为:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4+a(1+a)5+a(1+a)6然后我们再从最简单的情形入手,从中发现规律,找到解决问题的方法:(1)仿照②,写出将1+a+a(1+a)+a(1+a)2+a(1+a)3进行因式分解的过程;(2)填空:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4= ;发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n= ;问题解决:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6= (结果用乘方表示).4、分解因式:.5、分解因式:(1) (2) -参考答案-一、单选题1、D【解析】【分析】先提取公因式,再用完全平方公式分解因式即可.【详解】解:a2b﹣2ab+b=b(a2﹣2a+1)=b(a﹣1)2.故选:D.【点睛】本题考查的是因式分解,掌握“提公因式与公式法分解因式”是解本题的关键. 注意分解因式要彻底.2、A【解析】【分析】利用平方差公式逐项进行判断,即可求解.【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.3、B【解析】【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】解:原式=(a-c+b)(a-c-b),∵两边之和大于第三边,两边之差小于第三边,∴a-c+b>0,a-c-b<0,∵两数相乘,异号得负,∴代数式的值小于0.故选:B.【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.4、D【解析】【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.5、A【解析】【分析】根据平方差公式、完全平方公式分解因式即可.【详解】解:A、不能因式分解,符合题意;B、=,能因式分解,不符合题意;C、=,能因式分解,不符合题意;D、 =,能因式分解,不符合题意,故选:A.【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,掌握因式分解的结构特征是解答的关键.6、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;x2-y2能用平方差公式分解因式,故(2)符合题意;-m2+n2能用平方差公式分解因式,故(3)符合题意;-b2-a2不能用平方差公式分解因式,故(4)不符合题意;-a6+4能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.7、B【解析】【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.8、B【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:、是单项式的乘法,不是因式分解,故本选项不符合题意;、是因式分解,利用了完全平方差公式进行了因式分解,故本选项符合题意; 、是整式的乘法,不是因式分解,故本选项不符合题意;、因式分解错误,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,解题的关键是能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.9、A【解析】【分析】根据因式分解的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案.【详解】解:原式==故选:A.【点睛】本题考查的是因式分解的基础应用,熟练掌握因式分解的一般解题步骤,以及各种因式分解的方法是解题的关键.10、B【解析】【分析】根据因式分解的意义对各选项进行逐一分析即可.【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.故选:B.【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.二、填空题1、2(x-a)(4a-2b-3c)【解析】【分析】提出公因式2(x-a)即可求得结果【详解】解:2(x-a)(4a-2b-3c)故答案为:2(x-a)(4a-2b-3c)【点睛】本题考查了提公因式法因式分解,正确的找到公因式是解题的关键.2、9【解析】【分析】先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.【详解】解:∵,∴,∴=====9故答案为:9.【点睛】本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.3、【解析】【分析】利用平方差公式,进行分解因式即可.【详解】﹣64====.【点睛】本题考查了因式分解,灵活运用平方差公式是解题的关键.4、##【解析】【分析】直接找出公因式(a+b),进而分解因式得出答案.【详解】解:(a+b)2﹣(a+b)=(a+b)(a+b﹣1).故答案为:(a+b)(a+b﹣1).【点睛】此题主要考查因式分解,解题的关键是熟知提公因式法的运用.5、【解析】【分析】先利用配方法,再利用平方差公式即可得.【详解】解:===.故答案为:.【点睛】本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.三、解答题1、2x(x+3y)2【解析】【分析】先提公因式,进而根据完全平方公式因式分解即可.【详解】解:2x3+12x2y+18xy2=2x(x2+6xy+9y2)=2x(x+3y)2.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.2、 (1)不是“满天星数”,是“满天星数”, (2)【解析】【分析】(1)根据定义进行判断即可,并按计算即可;(2)根据定义分别用代数式表示出数,进而根据整除以及求得二元一次方程的整数解即可求得的值,进而求得,根据(1)的方法求得的值.(1)解:不是“满天星数”,是“满天星数”,理由如下,根据定义, 的百位数为4,千位数为2,百位比千位上的数字大2,则2467不是“满天星数”;的百位数是4,千位数是3,百位比千位上的数字大1,十位上的数字是8,个为上的数字是9,个位上的数字比十位上的数值大1,符合定义,故是“满天星数”,(2)、是“满天星数”,的千位数字为(是整数且),个位数字为;则的百位数字为,十位数字为(是整数且).则能被整除且,即能被整除,,即或或,,【点睛】本题考查了新定义运算,因式分解,求二元一次方程的特殊解,理解新定义是解题的关键.3、 (1)(1+a)4(2)(1+a)5;(1+a)n+1;47【解析】【分析】(1)用提取公因式(1+a)一步步分解因式,最后化为积的形式;(2)通过前面(1)的例子,用提取公因式法(1+a)一步步分解因式,最后化为积的形式,发现规律:是根据(1)(2)的结果写出结论;问题解决:通过前面的例子,用提取公因式法(1+3)一步步分解因式,最后化为积的形式.(1)解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)(1+a)+a(1+a)2+a(1+a)3=(1+a)2(1+a)+a(1+a)3=(1+a)3+a(1+a)3=(1+a)3(1+a)=(1+a)4;(2)解:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4=(1+a)(1+a)+a(1+a)2+a(1+a)3+a(1+a)4=(1+a)2(1+a)+a(1+a)3+a(1+a)4=(1+a)3+a(1+a)3+a(1+a)4=(1+a)3(1+a)+a(1+a)4=(1+a)4+a(1+a)4=(1+a)4(1+a)=(1+a)5;故答案为:(1+a)5;发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n=(1+a)n+1;故答案为:(1+a)n+1;问题解决:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)2(1+3)+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)3(1+3)+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)4(1+3)+3(1+3)5+3(1+3)6=(1+3)5(1+3)+3(1+3)6=(1+3)6(1+3)=(1+3)7=47.故答案为:47.【点睛】此题考查了数字类运算的规律,提公因式法分解因式,整式的混合运算法则,正确掌握提公因式法分解因式是解题的关键,同时还考查了类比解题的思想.4、.【解析】【分析】利用“两两”分组法进行因式分解.【详解】解:原式.【点睛】本题主要考查了非负数的性质和分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题采用了两两分组法.5、(1);(2)【解析】【分析】(1)先提公因式-3,再利用完全平方公式分解;(2)先提公因式(x-y),再利用平方差公式分解因式.【详解】解:(1)==(2)===.【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)及解决问题是解题的关键.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试课后测评,共16页。试卷主要包含了下列因式分解正确的是,当n为自然数时,,下列各式从左至右是因式分解的是,分解因式2a2等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试课后复习题,共16页。试卷主要包含了下列变形,属因式分解的是,下列因式分解错误的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试当堂达标检测题,共16页。试卷主要包含了下列多项式不能因式分解的是,当n为自然数时,,分解因式2a2,下列因式分解正确的是,若a2=b+2,b2=a+2,等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)