初中冀教版第十一章 因式分解综合与测试课时练习
展开
这是一份初中冀教版第十一章 因式分解综合与测试课时练习,共18页。试卷主要包含了已知c<a<b<0,若M=|a,下列多项式中有因式x﹣1的是,下列各式因式分解正确的是,下列因式分解正确的是,下列各式中,正确的因式分解是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式中,从左往右的变形为因式分解的是( )A.a2﹣a﹣1=a(a﹣1﹣)B.(a﹣b)(a+b)=a2﹣b2C.m2﹣m﹣1=m(m﹣1)﹣1D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)2、把多项式x3﹣2x2+x分解因式结果正确的是( )A.x(x2﹣2x) B.x2(x﹣2)C.x(x+1)(x﹣1) D.x(x﹣1)23、下列因式分解正确的是( ).A. B.C. D.4、下列各式从左到右的变形中,是因式分解且完全正确的是( )A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x﹣3=x(x﹣2)﹣3C.x2﹣4x+4=(x﹣2)2 D.x3﹣x=x(x2﹣1)5、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )A.M<N B.M=N C.M>N D.不能确定6、下列多项式中有因式x﹣1的是( )①x2+x﹣2;②x2+3x+2;③x2﹣x﹣2;④x2﹣3x+2A.①② B.②③ C.②④ D.①④7、下列各式因式分解正确的是( )A. B.C. D.8、下列因式分解正确的是( )A. B.C. D.9、下列各式中,正确的因式分解是( )A.B.C.D.10、下列等式中,从左到右是因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若实数满足,则___________.2、分解因式:2x3﹣x2=_____.3、已知,,则代数式的值为______.4、计算:_________,_________,_________.分解因式:_________,_________,________.5、分解因式:________.三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1)(2)16-8(x-y)+(x-y)22、(1)计算:2·+; (2)因式分解:3+12+12x.3、在“整式乘法与因式分解”这一章的学习过程中,我们常采用构造几何图形的方法对代数式的变形加以说明.例如,利用图中边长分别为a,b的正方形,以及长为a,宽为b的长方形卡片若干张拼成图2(卡片间不重叠、无缝隙),可以用来解释完全平方公式:.请你解答下面的问题:(1)利用图1中的三种卡片若干张拼成图,可以解释等式:_____________;(2)利用图1中三种卡片若干张拼出一个面积为的长方形ABCD,请你分析这个长方形的长和宽.4、仔细阅读下面例题,解答问题:例题:已知:二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(x﹣5),求另一个因式以及k的值.5、因式分解:(1)3a2﹣6ab+3b2 (2) (x+1)(x+2)(x+3)(x+4)+1 -参考答案-一、单选题1、D【解析】【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.2、D【解析】【分析】先提取公因式,再按照完全平方公式分解即可得到答案.【详解】解:x3﹣2x2+x 故选D【点睛】本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.3、C【解析】【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误.故选:C.【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.4、C【解析】【分析】根据因式分解的定义逐项分析即可.【详解】A.(x+2)(x﹣2)=x2﹣4是乘法运算,故不符合题意;B.x2﹣2x﹣3=x(x﹣2)﹣3的右边不是积的形式,故不符合题意;C.x2﹣4x+4=(x﹣2)2是因式分解,符合题意;D.x3﹣x=x(x2﹣1)=x(x+1)(x-1),原式分解不彻底,故不符合题意;故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.5、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二: ∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.6、D【解析】【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x2+x﹣2=;②x2+3x+2=;③x2﹣x﹣2=;④x2﹣3x+2=.∴有因式x﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.7、B【解析】【分析】根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.【详解】解:A、不能进行因式分解,错误;B、选项正确,是因式分解;C、选项是整式的乘法,不是因式分解,不符合题意;D、,选项因式分解错误;故选:B.【点睛】题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.8、B【解析】【分析】直接利用提取公因式法以及十字相乘法分解因式,进而判断即可.【详解】解:A、,故此选项不合题意;B、,故此选项符合题意;C、,故此选项不合题意;D、,不能分解,故此选项不合题意;故选:B.【点睛】本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.10、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.二、填空题1、【解析】【分析】把原式化为可得再利用非负数的性质求解从而可得答案.【详解】解: , 而 解得: 故答案为:【点睛】本题考查的是非负数的性质,利用完全平方公式的变形求解代数式的值,因式分解的应用,熟练的运用完全平方公式是解本题的关键.2、x2(2x﹣1)【解析】【分析】根据提公因式法分解.【详解】解:2x3﹣x2=x2(2x﹣1),故答案为:x2(2x﹣1).【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式、十字相乘)是解题的关键.3、12【解析】【分析】把因式分解,再代入已知的式子即可求解.【详解】∵,,∴∴===3×4=12故答案为:12.【点睛】此题主要考查代数式求值,运用完全平方公式因式分解,解题的关键是熟知因式分解的运用.4、 【解析】【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:,,.分解因式:,,.故答案为:;;;;;【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.5、(2a+3b)(y﹣z)【解析】【分析】先调整符号,然后提公因式即可.【详解】解:,=,=.故答案为.【点睛】本题考查提公因式法因式分解,掌握因式分解的方法是解题关键.三、解答题1、 (1)(2)【解析】【分析】(1)先提公因式x,再利用完全平方公式分解因式;(2)根据完全平方公式分解即可.(1)解:原式==(2)解:原式=.【点睛】此题考查了因式分解:将一个多项式写成几个整式的积的形式,叫将多项式分解因式,熟记因式分解的定义并掌握因式分解的方法是解题的关键.2、(1)0;(2)3x【解析】【分析】(1)根据题意,得·=,,合并同类项即可;(2)先提取公因式3x,后套用完全平方公式即可.【详解】(1)2·+原式=2+-3=0.(2)原式=3x(+4x+4)=3x.【点睛】本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键.3、 (1)(2)长为,宽为.【解析】【分析】(1)根据图形,有直接求和间接求两种方法,列出等式即可;(2)根据已知等式画出相应的图形,然后根据图形写出等式即可.(1)解: (2)解:答:由图形可知,长为,宽为.【点睛】此题考查了因式分解的应用,面积与代数式恒等式的关系,熟练掌握运算法则是解本题的关键.4、另一个因式为(2x+13),k的值为65.【解析】【分析】设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可.【详解】解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a)则2x2+3x﹣k=2x2+(a﹣10)x﹣5a∴,解得:a=13,k=65.故另一个因式为(2x+13),k的值为65.【点睛】此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解.5、(1);(2).【解析】【分析】(1)先提取公因式,然后利用公式法进行因式分解即可;(2)先利用乘法交换律进行变换,然后根据多项式乘以多项式分两组计算,将看作一个整体,继续进行多项式乘法运算,最后运用公式法进行因式分解即可.【详解】解:(1),,;(2),,,,.【点睛】题目主要考查因式分解的方法提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试当堂检测题,共17页。试卷主要包含了已知,,那么的值为,下列因式分解正确的是.,下列变形,属因式分解的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试课后测评,共16页。试卷主要包含了下列因式分解正确的是,当n为自然数时,,下列各式从左至右是因式分解的是,分解因式2a2等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试当堂达标检测题,共16页。试卷主要包含了下列多项式不能因式分解的是,当n为自然数时,,分解因式2a2,下列因式分解正确的是,若a2=b+2,b2=a+2,等内容,欢迎下载使用。