![2021-2022学年冀教版七年级数学下册第十一章 因式分解同步训练试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12719238/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第十一章 因式分解同步训练试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12719238/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第十一章 因式分解同步训练试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12719238/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第十一章 因式分解综合与测试同步训练题
展开
这是一份2020-2021学年第十一章 因式分解综合与测试同步训练题,共17页。试卷主要包含了下列各式从左至右是因式分解的是,下列各式中,不能因式分解的是,当n为自然数时,等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式从左到右的变形是因式分解的是( )A. B.C. D.2、下列多项式中有因式x﹣1的是( )①x2+x﹣2;②x2+3x+2;③x2﹣x﹣2;④x2﹣3x+2A.①② B.②③ C.②④ D.①④3、把代数式分解因式,正确的结果是( )A.-ab(ab+3b) B.-ab(ab+3b-1)C.-ab(ab-3b+1) D.-ab(ab-b-1)4、下列各等式中,从左到右的变形是正确的因式分解的是( )A.2x•(x﹣y)=2x2﹣2xy B.(x+y)2﹣x2=y(2x+y)C.3mx2﹣2nx+x=x(3mx﹣2n) D.x2+3x﹣2=x(x+3)﹣25、下列各式从左至右是因式分解的是( )A. B.C. D.6、下列各式中,不能因式分解的是( )A.4x2﹣4x+1 B.x2﹣4y2C.x3﹣2x2y+xy2 D.x2+y2+x2y27、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )A.被5整除 B.被6整除 C.被7整除 D.被8整除8、下列式子从左到右的变形中,属于因式分解的是( )A. B.C. D.9、下列多项式中能用平方差公式分解因式的是( )A. B. C. D.10、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )A.a(m+n)+b(m+n)=(a+b)(m+n)B.m(a+b)+n(a+b)=(a+b)(m+n)C.am+bm+an+bn=(a+b)(m+n)D.ab+mn+am+bn=(a+b)(m+n)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若实数满足,则___________.2、分解因式:______.3、分解因式:______.4、分解因式:=______.5、已知:x+y=0.34,x+3y=0.86,则x2+4xy+4y2=_____.三、解答题(5小题,每小题10分,共计50分)1、分解因式:.2、因式分解:9﹣x2+2xy﹣y2.3、分解因式:(1);(2).4、分解因式:(1);(2).5、小明在学习有关整式的知识时,发现一个有趣的现象:对于关于的多项式,由于,所以当取任意一对互为相反数的数时,多项式的值是相等的.例如,当,即或0时,的值均为3;当,即或时,的值均为6.于是小明给出一个定义:对于关于的多项式,若当取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于对称.例如关于对称.请结合小明的思考过程,运用此定义解决下列问题:(1)多项式关于 对称;(2)若关于的多项式关于对称,求的值;(3)整式关于 对称. -参考答案-一、单选题1、A【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;B.等式的左边不是多项式,原变形不是因式分解,故此选项不符合题意;C.不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意; D.原变形是整式的乘法,不是因式分解,故此选项不符合题意;故选:A【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.2、D【解析】【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x2+x﹣2=;②x2+3x+2=;③x2﹣x﹣2=;④x2﹣3x+2=.∴有因式x﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.3、B【解析】【分析】根据提公因式法因式分解,先提出,即可求得答案【详解】解:故选B【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.4、B【解析】【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、(x+y)2﹣x2=2xy+y2=y(2x+y),把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;C、3mx2﹣2nx+x=x(3mx﹣2n+1),故此选项不符合题意;D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.故选:B.【点睛】本题考查了因式分解的定义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.5、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不是因式分解,故本选项不符合题意;D、,是整式的乘法,不是因式分解,故本选项不符合题意.故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6、D【解析】【分析】直接利用公式法以及提取公因式分解因式进而判断即可.【详解】解:A、4x2﹣4x+1=(2x−1)2,故本选项不合题意;B、x2﹣4y2=(x+2y)(x-2y),故本选项不合题意;C、x3﹣2x2y+xy2=x(x-y)2,故本选项不合题意;D、x2+y2+x2y2不能因式分解,故本选项符合题意;故选:D.【点睛】此题主要考查了提取公因法以及公式法分解因式,正确应用公式法分解因式是解题关键.7、D【解析】【分析】先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.【详解】解: (n+1)2﹣(n﹣3)2 n为自然数所以(n+1)2﹣(n﹣3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.8、B【解析】【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.9、A【解析】【分析】利用平方差公式逐项进行判断,即可求解.【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.10、D【解析】【分析】由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可【详解】解:如图②,S长方形ABCD=(a+b)(m+n),A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;故选:D.【点睛】本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.二、填空题1、【解析】【分析】把原式化为可得再利用非负数的性质求解从而可得答案.【详解】解: , 而 解得: 故答案为:【点睛】本题考查的是非负数的性质,利用完全平方公式的变形求解代数式的值,因式分解的应用,熟练的运用完全平方公式是解本题的关键.2、m(m+1)(m-1)【解析】【分析】先提公因式,再用平方差公式法分解因式.【详解】故答案为m(m+1)(m-1).【点睛】本题考查了提公因式法和公式法分解因式,因式分解的步骤一般是:先考虑提公因式法,再考虑公式法,最后保证再也不能分解了.3、【解析】【分析】根据提取公因式法,提取公因式即可求解.【详解】解:,故答案为:.【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法.4、##【解析】【分析】根据公式法因式分解即可【详解】解:=故答案为:【点睛】本题考查了公式法分解因式,掌握公式法因式分解是解题的关键.5、0.36##925【解析】【分析】x+y=0.34①,x+3y=0.86②,由①+②x+2y=4,把所求代数式根据完全平方公式因式分解,再代入计算即可.【详解】解:x+y=0.34①,x+3y=0.86②,由①+②可得2x+4y=1.2,即x+2y=0.6,∴x2+4xy+4y2=(x+2y)2=0.62=0.36.故答案为:0.36.【点睛】本题考查了完全平方公式进行因式分解,熟练掌握a2±2ab+b2=(a±b)2是解答本题的关键.三、解答题1、.【解析】【分析】先将因式进行分组为,再综合利用提公因式法和平方差公式分解因式即可得.【详解】解:原式.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.2、(3+x﹣y)(3﹣x+y)【解析】【分析】首先把多项式分为9和-(x2-2xy+y2),后一组利用完全平方公式分解因式,接着利用平方差公式即可分解因式.【详解】解:9-x2+2xy-y2=32-(x2-2xy+y2)=32-(x-y)2=(3+x-y)(3-x+y).【点睛】本题主要考查了利用分组分解法分解因式,解题的关键是把多项式分为9和-(x2-2xy+y2),然后利用公式法分解因式即可解决问题.3、 (1)(2)【解析】【分析】(1)提取公因式,然后用完全平方公式进行化简即可.(2)提取公因式,然后用平方差公式进行化简即可.(1)解:原式;(2)解:原式.【点睛】本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.4、(1);(2)【解析】【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.【详解】解:(1)原式=;(2)原式=.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.5、 (1)2(2)(3)【解析】【分析】(1)对多项式进行配方,根据新定义判断即可得;(2)求出的对称轴,令对称轴等于3即可得;(3)对多项式进行配方,根据新定义判断即可得.(1)解:,则此多项式关于对称,故答案为:2;(2)解:,关于的多项式关于对称,又关于的多项式关于对称,,即;(3)解:,则整式关于对称,故答案为:.【点睛】本题考查了配方法的应用,能够对多项式进行配方,理解新定义是解题的关键.
相关试卷
这是一份2020-2021学年第十一章 因式分解综合与测试测试题,共15页。试卷主要包含了下列因式分解正确的是,下列运算错误的是,多项式分解因式的结果是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题,共19页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试当堂检测题,共17页。试卷主要包含了若a,已知x2+x﹣6=,下列分解因式正确的是,下列因式分解正确的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)