2020-2021学年第十一章 因式分解综合与测试习题
展开
这是一份2020-2021学年第十一章 因式分解综合与测试习题,共19页。试卷主要包含了下列各式中,正确的因式分解是,把代数式分解因式,正确的结果是,下列因式分解正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列从左边到右边的变形,属于因式分解的是( )A.x2﹣x﹣6=(x+2)(x﹣3) B.x2﹣2x+1=x(x﹣2)+1C.x2+y2=(x+y)2 D.(x+1)(x﹣1)=x2﹣12、下列运算错误的是( )A. B. C. D.(a≠0)3、下列多项式不能用公式法因式分解的是( )A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣14、下列各式中,正确的因式分解是( )A.B.C.D.5、下列各式从左到右的变形中,属于因式分解的是( )A. B.C. D.6、把代数式分解因式,正确的结果是( )A.-ab(ab+3b) B.-ab(ab+3b-1)C.-ab(ab-3b+1) D.-ab(ab-b-1)7、若能分解成两个因式的积,则整数a的取值可能有( )A.4个 B.6个 C.8个 D.无数个8、下列因式分解正确的是( )A. B.C. D.9、下列从左到右的变形,是因式分解的是( )A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)C.x2+1=x(x+) D.a2b+ab2=ab(a+b)10、下列等式中,从左到右是因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:9a﹣=______________.2、要使多项式x2﹣ax﹣20在整数范围内可因式分解,给出整数a=____________.3、分解因式:________.4、分解因式:________.5、分解因式:=_______.三、解答题(5小题,每小题10分,共计50分)1、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程解:设x2+2x=y,原式 =y(y+2)+1 (第一步)=y2+2y+1 (第二步)=(y+1)2 (第三步)=(x2+2x+1)2 (第四步)(1)该同学第二步到第三步运用了因式分解的( )A.提取公因式 B.平方差公式C.两数和的完全平方公式 D.两数差的完全平方公式(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后? .(填“是”或“否”)如果否,直接写出最后的结果 (3)请你模仿以上方法尝试对多项式(x2﹣4x+3)(x2﹣4x+5)+1进行因式分解.2、在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568_____(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.3、分解因式(1) (2)4、因式分解:(1)(2)(3)5、材料1:对于一个四位自然数,如果满足各数位上的数字均不为,它的百位上的数字比千位上的数字大,个位上的数字比十位上的数字大,则称为“满天星数”.对于一个“满天星数”,同时将的个位数字交换到十位、十位数字交换到百位、百位数字交换到个位,得到一个新的四位数,规定:.例如:,因为,,所以是“满天星数”;将的个位数字交换到十位,将十位数字交换到百位,将百位数字交换到个位,得到,.材料2:对于任意四位自然数(、、、是整数且,),规定:.根据以上材料,解决下列问题:(1)请判断、是不是“满天星数”,请说明理由;如果是,请求出对应的的值;(2)已知、是“满天星数”,其中的千位数字为(是整数且),个位数字为;的百位数字为,十位数字为(是整数且).若能被整除且,求的值. -参考答案-一、单选题1、A【解析】【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.【详解】解:x2﹣x﹣6=(x+2)(x﹣3)属于因式分解,故A符合题意;x2﹣2x+1=x(x﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;x2+y2=(x+y)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;(x+1)(x﹣1)=x2﹣1是整式的乘法运算,不是因式分解,故D不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.2、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a≠0),故该选项正确,不符合题意,故选A.【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.3、C【解析】【分析】直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.【详解】解:A中,故此选项不合题意;B中,故此选项不合题意;C中无法分解因式,故此选项符合题意;D中,故此选项不合题意;故选:C.【点睛】本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.4、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.5、B【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:、是单项式的乘法,不是因式分解,故本选项不符合题意;、是因式分解,利用了完全平方差公式进行了因式分解,故本选项符合题意; 、是整式的乘法,不是因式分解,故本选项不符合题意;、因式分解错误,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,解题的关键是能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6、B【解析】【分析】根据提公因式法因式分解,先提出,即可求得答案【详解】解:故选B【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.7、B【解析】【分析】把18分解为两个整数的积的形式,a等于这两个整数的和.【详解】解:18=1×18=2×9=3×6=(-1)×(-18)=(-2)×(-9)=(-3)×(-6),所以a=1+18=19或2+9=11或3+6=9或(-1)+(-18)=-19或(-2)+(-9)=-11或(-3)+(=6)=-9.∴整数a的值是±9或±11或±19,共有6个.故选:B.【点睛】本题考查了十字相乘法分解因式,对常数项的不同分解是解题的关键.8、A【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.【详解】解:A、,选项说法正确,符合题意;B、,选项说法错误,不符合题意;C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;D、,选项说法错误,不符合题意;故选A.【点睛】本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.9、D【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D.【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.10、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.二、填空题1、a(3+a)(3﹣a)【解析】【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【详解】解:9a﹣,=a (9﹣),=a(3+a)(3﹣a).【点睛】本题考查了因式分解,熟练掌握先提后选用公式的解题思路是解题的关键.2、±1或±19或±8【解析】【分析】把﹣20分成20和﹣1,﹣2和10,5和﹣4,﹣5和4,2和﹣10,﹣20和1,进而得出即原式分解为(x+20)(x﹣1),(x﹣2)(x+10),(x+5)(x﹣4),(x﹣5)(x+4),(x+2)(x﹣10),(x﹣20)(x+1),即可得到答案.【详解】解:当x2﹣ax﹣20=(x+20)(x﹣1)时,a=20+(﹣1)=19,当x2﹣ax﹣20=(x﹣2)(x+10)时,a=﹣2+10=8,当x2﹣ax﹣20=(x+5)(x﹣4)时,a=5+(﹣4)=1,当x2﹣ax﹣20=(x﹣5)(x+4)时,a=﹣5+4=﹣1,当x2﹣ax﹣20=(x+2)(x﹣10)时,a=2+(﹣10)=﹣8,当x2﹣ax﹣20=(x﹣20)(x+1)时,a=﹣20+1=﹣19,综上所述:整数a的值为±1或±19或±8.故答案为:±1或±19或±8.【点睛】本题主要考查对因式分解−十字相乘法的理解和掌握,理解x2+(a+b)x+ab=(x+a)(x+b)是解此题的关键.3、【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=,=故答案为:.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、##【解析】【分析】根据完全平方公式进行因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.5、【解析】【分析】两次利用平方差公式即可解决.【详解】故答案为:【点睛】本题考查了用平方差公式分解因式,注意因式分解要分解到再也不能分解为止.三、解答题1、(1)C;(2)否,;(3)【解析】【分析】(1)根据题意可知,第二步到第三步用到了完全平方公式;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;(3)仿照题意,设然后求解即可.【详解】解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式 ,故选C;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,∴分解分式的结果为:,故答案为:否,;(3)设 ∴ .【点睛】本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意.2、 (1)是,所有符合条件的N的值为5326,5662(2)见解析【解析】【分析】(1)分别得出31568的“顺数”与“逆数”,求差,计算能否被17整除即可判断;设“最佳拍档数”N的十位数字为x,百位数字为y,可用x、y表示出N,根据“顺数”与“逆数”的定义可表示出“顺数”与“逆数”的差为90(66﹣x﹣10y),根据“最佳拍档数”的定义可得90(66﹣x﹣10y)能被17整除,即可得出符合题意x、y的值,即可得答案;(2)设三位正整数K的个位数字为x,十位数字为y,百位数字为z,可表示出“顺数”与“逆数”的差,可判断差能否被30整除;同理可判断四位正整数“顺数”与“逆数”的差能否被30整除,综上即可得答案.(1)(1)31568的“顺数”为361568,31568的“逆数”为315668,(361568-315668)÷17=2700;∴31568是“最佳拍档数”,设“最佳拍档数”N的十位数字为x,百位数字为y,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+3﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+2﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,能被17整除;∴十位数字为2,百位数②x=6,y=6时,能被17整除;综上,所有符合条件的N的值为5326,5662故答案为:是(2)(2)设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,∴任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【点睛】本题考查“顺数”、“逆数”与“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,正确分解因式是解题关键.3、(1);(2).【解析】【分析】(1)先提公因式,然后利用平方差公式因式分解即可;(2)利用提公因式法分解因式即可.【详解】(1)解:原式;(2)解:原式.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4、(1);(2);(3)【解析】【分析】(1)利用提取公式法因式分解即可;(2)利用提取公式法因式分解即可;(3)提取公因式2y,在利用完全平方公式因式分解即可.【详解】解:(1);(2)(3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、 (1)不是“满天星数”,是“满天星数”, (2)【解析】【分析】(1)根据定义进行判断即可,并按计算即可;(2)根据定义分别用代数式表示出数,进而根据整除以及求得二元一次方程的整数解即可求得的值,进而求得,根据(1)的方法求得的值.(1)解:不是“满天星数”,是“满天星数”,理由如下,根据定义, 的百位数为4,千位数为2,百位比千位上的数字大2,则2467不是“满天星数”;的百位数是4,千位数是3,百位比千位上的数字大1,十位上的数字是8,个为上的数字是9,个位上的数字比十位上的数值大1,符合定义,故是“满天星数”,(2)、是“满天星数”,的千位数字为(是整数且),个位数字为;则的百位数字为,十位数字为(是整数且).则能被整除且,即能被整除,,即或或,,【点睛】本题考查了新定义运算,因式分解,求二元一次方程的特殊解,理解新定义是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后复习题,共17页。试卷主要包含了如果x2+kx﹣10=,若a2=b+2,b2=a+2,,已知,,求代数式的值为等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试测试题,共15页。试卷主要包含了下列因式分解正确的是,已知实数x,y满足,下列分解因式正确的是,多项式分解因式的结果是等内容,欢迎下载使用。
这是一份数学七年级下册第十一章 因式分解综合与测试课后复习题,共17页。试卷主要包含了因式分解,下列因式分解正确的是.,下列多项式中有因式x﹣1的是,把多项式分解因式,其结果是等内容,欢迎下载使用。