2020-2021学年第八章 整式乘法综合与测试课后练习题
展开
这是一份2020-2021学年第八章 整式乘法综合与测试课后练习题,共20页。试卷主要包含了计算正确的结果是,下列运算一定正确的是,若,则代数式的值为等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、已知,,则下列关系成立的是( )A.m+1=5n B.n=2m C.m+1=n D.2m=5+n2、如果多项式 x2  mx  4 恰好是某个整式的平方,那么 m 的值为( )A.2 B.-2 C.±2 D.±43、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )A. B. C. D.4、影片《长津湖》表现了志愿军战士不惧强敌敢于战斗的精神,敢于胜利的英雄气概.电影上映不到两个月,含预售票房已近57亿元,数据57亿用科学记数法表示为( )A.57×108 B.5.7×1010 C.0.57×1010 D.5.7×1095、计算正确的结果是( )A. B. C. D.6、下列运算一定正确的是( )A. B.C. D.7、2021年12月6日,根据国家统计局发布的数据,我国粮食总产量再度实现增长,实现了“十八连丰”,达到13657亿斤.将13657亿用科学记数法表示为( )A. B. C. D.8、若,则代数式的值为( )A.6 B.8 C.12 D.169、2021年是中国共产党建党100周年,根据中央组织部最新党内统计数据显示,截至2021年6月5日,中国共产党党员总数为9514.8万名,数据9514.8万用科学记数法表示为( )A. B. C. D.10、0.1234567891011……是一个无理数,其小数部分是由1开始依次写下递增的正整数得到的,则该无理数小数点右边的第2022位数字是( )A.0 B.1 C.2 D.3第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、已知实数满足,则___________.2、武汉火神山医院建筑面积340000000平方厘米,拥有1000张床位.将340000000平方厘米用科学记数法表示应为__________平方厘米.3、已知代数式 可以利用完全平方公式变形为 ,进而可知 的最小值是 .依此方法,代数式 的最小值是________________.4、直接写出计算结果:(1)=____;(2)____;(3)=____;(4)102×98=____.5、计算 的结果是______.三、解答题(5小题,每小题10分,共计50分)1、计算:(1)22+(﹣33)﹣3×(﹣11);(2)()×(﹣24);(3)2a2b(3a2﹣ab﹣1)+2a3b2;(4);(5)先化简,再求值:3a2﹣2(a2﹣ab)+(b2﹣2ab),其中a=﹣1,b=22、计算:(1);(2).3、(1)在数学中,完全平方公式是比较熟悉的,例如.若,,则______;(2)如图1,线段AB上有一点C,以AC、CB为直角边在上方分别作等腰直角三角形ACE和CBF,已知,,的面积为6,设,,求与的面积之和;(3)如图2,两个正方形ABCD和EFGH重叠放置,两条边的交点分别为M、N.AB的延长线与FG交于点Q,CB的延长线与EF交于点P,已知,,阴影部分的两个正方形EPBM和BQGN的面积之和为60,则正方形ABCD和EFGH的重叠部分的长方形BMHN的面积为______.4、观察下列各式:;;;……根据这一规律计算:(1)______;______;(2).5、例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)填空:若(4﹣x)x=5,则(4﹣x)2+x2= ;(3)如图所示,已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,CF=2,长方形EMFD的面积是12,则x的值为 . -参考答案-一、单选题1、A【解析】【分析】利用积的乘方、幂的乘方把32n=6化成25n=6,2m=3化成2m+1=6,再比较求解即可.【详解】解:∵32n=6,∴25n=6,∵2m=3,∴2m×2=3×2,即2m+1=6,∴2m+1=25n,∴m+1=5n,故选:A.【点睛】本题主要考查了积的乘方、幂的乘方,关键是掌握计算法则,并能熟练应用.2、D【解析】【分析】根据平方项确定是完全平方公式,把公式展开,利用一次项系数相等确定m的值即可.【详解】解:∵x2  mx  4=(x±2)2=x2±4x+4,∴m=±4.故选D.【点睛】本题考查完全平方公式,掌握公式的特征是解题关键.3、C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:48500000科学记数法表示为:48500000=.故答案为:.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:57亿=5700000000=5.7×109.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.5、C【解析】【分析】直接利用积的乘方运算法则计算即可.【详解】解:,故选:C.【点睛】本题考查了积的乘方运算,解题的关键是掌握相应的运算法则.6、D【解析】【分析】由同底数幂除法、合并同类项、幂的乘方、平方差公式,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,不能合并,故B错误;C、,故C错误;D、,故D正确;故选:D.【点睛】本题考查了同底数幂除法、合并同类项、幂的乘方、平方差公式,解题的关键是掌握运算法则进行判断.7、C【解析】【分析】结合题意,根据科学记数法的一般表达形式分析,即可得到答案.【详解】13657亿用科学记数法表示为故选:C.【点睛】本题考查了科学记数法的知识,解题的关键是熟练掌握科学记数法的定义:任何绝对值大于1的数都可以用科学记数法表示为的形式,其中n为整数,且a满足1≤|a|<10.8、D【解析】【分析】对已知条件变形为:,然后等式两边再同时平方即可求解.【详解】解:由已知条件可知:,上述等式两边平方得到:,整理得到:,故选:D.【点睛】本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.9、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:9514.8万=95148000=9.5148×107.故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、A【解析】【分析】一位数字9个,两位数字90个,三位数字900个,由此算出2022处于三位数字的第几个数字求得答案即可.【详解】∵共有9个1位数,90个2位数,900个3位数,∴2022-9-90×2=1833,∴1833÷3=611,∵此611是继99后的第611个数,∴此数是710,第三位是0,故从左往右数第2022位上的数字为0,故选:A.【点睛】此题主要考查了规律型:数字的变化类,根据已知得出变化规律是解题关键.二、填空题1、【解析】【分析】由可得再利用非负数的性质求解且都不为0,从而可得答案.【详解】解: , 则都不为0,故答案为:【点睛】本题考查的是非负数的性质,完全平方公式的应用,熟练的构建非负数之和为0的条件是解本题的关键.2、【解析】【分析】科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以【详解】解:340000000 故答案为:【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.3、【解析】【分析】由题目中提供的方法把前两项凑成一个完全平方式即可求得最小值.【详解】所以代数式 的最小值是1;故答案为:1【点睛】本题考查了完全平方公式,根据二次项与一次项凑成完全平方式是本题的关键.4、 -12 -1 ax 9996【解析】【分析】(1)先乘方,再加减即可;(2)逆用积的乘方法则进行计算;(3)运用幂的乘方法则,同底数幂的乘除法法则以及积的乘方法则计算即可;(4)运用平方差公式计算即可.【详解】解:(1)=﹣1+(﹣10)﹣1=﹣1﹣10﹣1=﹣12.故答案为:﹣12.(2)=()101×()101()101=﹣()101=﹣1.故答案为:﹣1.(3)=a2x﹣2•ax+1÷a2x﹣1=a2x﹣2+x+1﹣(2x﹣1)=ax.故答案为:ax.(4)102×98=(100+2)×(100﹣2)=100²﹣2²=9996.故答案为:9996.【点睛】本题考查了实数的运算,平方差公式,同底数幂的乘除法,幂的乘方与积的乘方,零指数幂,负整数指数幂,熟练掌握各运算法则是解题关键.5、6x3y【解析】【分析】根据单项式乘以单项式法则,即可求解.【详解】解:.故答案为:【点睛】本题主要考查了单项式乘以单项式,熟练掌握单项式乘以单项式法则是解题的关键.三、解答题1、 (1)(2)(3)(4)(5),【解析】【分析】(1)根据有理数的混合运算进行计算即可;(2)根据乘法分配律进行计算即可;(3)根据整式的混合运算进行计算即可;(4)根据去分母,去括号,移项合并同类项,化系数为1的步骤解一元一次方程即可;(5)根据整式的加减运算先化简再求值即可(1)22+(﹣33)﹣3×(﹣11)(2)()×(﹣24)(3)2a2b(3a2﹣ab﹣1)+2a3b2(4)解得(5)3a2﹣2(a2﹣ab)+(b2﹣2ab)当a=﹣1,b=2时,原式【点睛】本题考查了有理数的混合运算,整式的化简求值,解一元一次方程,单项式乘以多项式,正确的计算是解题的关键.2、 (1);(2)【解析】【分析】(1)根据整式的乘法运算法则化简,再合并同类项即可求解;(2)根据负指数幂与零指数幂的性质化简,即可求解.(1)解:;(2)解:.【点睛】本题考查了单项式乘多项式,多项式乘多项式,乘方,负整数指数幂,零指数幂,关键是熟练掌握计算法则正确进行计算.3、(1)13;(2);(3)22.【解析】【分析】(1)根据完全平方公式变形得出即可;(2)设,,根据等腰直角三角形ACE和CBF,得出AC=EC=a,BC=CF=b,根据,得出,,利用公式变形得出即可;(3)设BM=m,BN=n,根据S矩形BNHM=mn,S正方形EPBM+S正方形BQGN=m2+n2=60,根据四边形ABCD为正方形,AB=BC,列等式m+7=n+3,得出n-m=4,根据公式变形得出即可.【详解】解:(1),故答案为:13;(2)设,,∵等腰直角三角形ACE和CBF,∴AC=EC=a,BC=CF=b,∵,∴,∵S△ACF=,∴,S△ACE+S△CBF=,∵,∴S△ACE+S△CBF=;(3)设BM=m,BN=n,∵S矩形BNHM=mn,S正方形EPBM+S正方形BQGN=m2+n2=60,四边形ABCD为正方形,AB=BC,∴m+7=n+3,∴n-m=4,∵,∴,∴S矩形BNHM=mn=22.故答案为:22.【点睛】本题考查完全平方公式变形应用,掌握公式变形应用的方法,数形结合,识别出题者意图是解题的突破口.4、 (1),(2)【解析】【分析】(1)观察已知等式,归纳总结确定出所求即可;(2)将原式变形为,根据所得规律计算即可.(1)解:归纳总结得:;;故答案为:;(2)解:原式==.【点睛】本题考查了多项式乘以多项式,观察等式发现规律是解题关键.5、 (1)12(2)6(3)5【解析】【分析】(1)根据代入计算即可;(2)由于(4-x)+x=4,将转化为,然后代入计算即可;(3)根据面积公式可得(x-1)(x-2)=12,设x-1=a,x-2=b,再根据代入得到,进而求出x.(1)解:∵x+y=8,∴,即,又∵,∴2xy=24,∴xy=12;(2)解:=16-2×5=6,故答案为:6;(3)解:由题意得(x-1)(x-2)=12,设x-1=a,x-2=b,则ab=12, ∴a-b=(x-1)-(x-2)=1,又∵,∴,∴,∴2x-3=±7,∴x=5或x=-2(舍).
相关试卷
这是一份数学七年级下册第八章 整式乘法综合与测试课后测评,共16页。试卷主要包含了下列运算正确的是,下列各式中,不正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第八章 整式乘法综合与测试当堂达标检测题,共20页。试卷主要包含了下列各式中,不正确的是,下列计算正确的是,下列运算一定正确的是,下列计算结果正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试课时练习,共17页。试卷主要包含了计算,若的结果中不含项,则的值为,我国刑法规定,走私等内容,欢迎下载使用。