冀教版七年级下册第八章 整式乘法综合与测试综合训练题
展开
这是一份冀教版七年级下册第八章 整式乘法综合与测试综合训练题,共19页。试卷主要包含了计算,正确结果是,利用如图①所示的长为a,下列运算正确的是,若的结果中不含项,则的值为等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、纳米(nm)是非常小的长度单位,.1nm用科学记数法表示为( )A. B. C. D.2、如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A. B.C. D.3、下列式子运算结果为2a的是( ).A. B. C. D.4、计算,正确结果是( )A. B. C. D.5、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A. B.C. D.6、新型冠状病毒感染的肺炎疫情是人类史上的一个灾难.据研究,这种病毒的直径约为120 nm(1 nm=10﹣9 m),用科学记数法表示120 nm应为( )A.1.2×10﹣9 m B.12×10﹣9 m C.0.12×10﹣10 m D.1.2×10﹣7 m7、下列运算正确的是( )A. B. C. D.8、若的结果中不含项,则的值为( )A.0 B.2 C. D.-29、下列运算正确的是( )A.(﹣ab2)3=﹣a3b6 B.2a+3a=5a2C.(a+b)2 = a2+b2 D.a2•a3=a610、2021年,中国国民经济总体回升向好.经初步测算,截止10月底,全国国内生产总值为335353亿元.将335353亿元用科学记数法表示为( )A.亿元 B.亿元C.亿元 D.亿元第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、若(x+a)(x-2)=x2+bx-6,则a+b=______.2、计算:(﹣2a2)2=______;2x2•(﹣3x3)=______.3、已知5x=3,5y=2,则52x﹣3y=_____.4、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.5、关于的多项式与的乘积,一次项系数是25,则的值为______.三、解答题(5小题,每小题10分,共计50分)1、化简:(x﹣2)2﹣x(x+4).2、阅读以下材料:苏格兰数学家纳皮尔(J.Npler,1550-1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(且),那么x叫做以a为底N的对数,记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:,理由如下:设,,则,,∴,由对数的定义得.又∵,∴.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:① ,② ,③ ;(2)求证:;(3)拓展运用:计算.3、若的乘积中不含的一次项,则__.4、阅读材料一:可以展开成一个有规律的多项式:;;;;……阅读材料二:我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.下面我们依次对展开式的各项系数进一步研究发现,当取正整数时可以单独列成表中的形式:例如,在三角形中第二行的三个数1,2,1,恰好对应展开式中的系数,(1)结合两个材料,写出的展开式:(2)多项式的展开式是一个_____次_____项式?并预测第三项的系数是_____;(3)请你猜想多项式取正整数)的展开式的各项系数之和,并进行合理说明(结果用含字母的代数式表示);(4)利用材料中的规律计算:(不用材料中的规律计算不给分).5、计算:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2. -参考答案-一、单选题1、C【解析】【分析】根据科学记数法的特点即可求解.【详解】解:.故选:C【点睛】本题考查了用科学记数法表示绝对值小于1的数,绝对值小于1的数用科学记数法可以写为的形式,其中1≤|a|<10,n为正整数,n的值为从第一个不为0的数向左数所有0的个数,熟知科学记数法的形式并准确确定a、n的值是解题关键.2、A【解析】【分析】如图,两个正方形面积的差,通过将阴影部分面积转移,构造一个长为,宽为的长方形,相同的面积用不同的表达式表示,从而可推导验证乘法公式中的平方差公式.【详解】解:如图,将大正方形的一边延长到,另一边长表示成的形式 变化前后面积相等由题意可知长方形面积为大正方形减去小正方形后的面积为故有故选A.【点睛】本题主要考察了平方差公式.解题的关键在于对长方形的构造.3、C【解析】【分析】由同底数幂的乘法可判断A,由合并同类项可判断B,C,由同底数幂的除法可判断D,从而可得答案.【详解】解:故A不符合题意;不能合并,故B不符合题意;故C符合题意;故D不符合题意;故选C【点睛】本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键.4、D【解析】【分析】根据单项式除以单项式的运算法则进行计算后即可确定正确的选项.【详解】解:原式=,故选:D.【点睛】本题考查了整式的除法,了解整式除法的运算法则是解答本题的关键,难度较小.5、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:,面积为:;1个小正方形的面积加上4个矩形的面积和为:;∴.故选:A.【点睛】此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.6、D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:120 nm=120×10−9 m=1.2×10−7 m,故选:D.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、A【解析】【分析】根据幂的乘方,同底幂相除,合并同类项,同底数幂相乘逐项判断即可求解.【详解】解:A、,故本选项正确,符合题意;B、,故本选项错误,不符合题意;C、 和 不是同类项,不能合并,故本选项错误,不符合题意;D、,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了幂的乘方,同底幂相除,合并同类项,同底数幂相乘,熟练掌握相关运算法则是解题的关键.8、B【解析】【分析】先根据多项式乘以多项式法则展开,合并同类项,由题可得含x的平方的项的系数为0,求出a即可.【详解】解:(x2+ax+2)(2x-4)=2x3+2ax2+4x-4x2-4ax-8=2x3+(-4+2a)x2+(-4a+4)x-8,∵(x2+ax+2)(2x-4)的结果中不含x2项,∴-4+2a=0,解得:a=2.故选:B.【点睛】本题考查了多项式乘以多项式,能熟练地运用法则进行化简是解此题的关键.9、A【解析】【分析】分别根据积的乘方运算法则,合并同类项法则,完全平方公式以及同底数幂的乘法法则逐一判断即可.【详解】解:A、(-ab2)3=-a3b6,故本选项符合题意;B、2a+3a=5a,故本选项不合题意;C、(a+b)2=a2+2ab+b2,故本选项不合题意;D、a2•a3=a5,故本选项不合题意;故选:A.【点睛】本题主要考查了积的乘方,同底数幂的乘法,完全平方公式以及合并同类项,熟记相关公式与运算法则是解答本题的关键.10、C【解析】【分析】用科学记数法表示成的形式,其中,,代入可得结果.【详解】解:亿的绝对值大于表示成的形式,亿表示成亿故选C.【点睛】本题考查了科学记数法.解题的关键在于确定的值.二、填空题1、4【解析】【分析】先计算等式左边的多项式乘法,再比较各项的系数可得一个关于的方程组,解方程组求出的值,由此即可得出答案.【详解】解:,,,,解得,则,故答案为:4.【点睛】本题考查了多项式乘法、二元一次方程组的应用等知识点,熟练掌握多项式乘法法则是解题关键.2、 4a4 ﹣6x5【解析】【分析】根据积的乘方运算法则,单项式乘以单项式进行运算即可【详解】解:(﹣2a2)2=4a4;2x2•(﹣3x3)=﹣6x5.故答案为:4a4;﹣6x5.【点睛】本题考查了单项式乘以单项式,积的乘方,掌握幂的运算是解题的关键.3、##【解析】【分析】逆用同底数幂的除法法则和幂的乘方法则计算即可.【详解】解:∵5x=3,5y=2,∴52x﹣3y=52x÷53y=(5x)2 ÷(5y)3=32 ÷23=,故答案为:.【点睛】本题考查了同底数幂的除法和幂的乘方运算的的逆运算,熟练掌握幂的乘方运算法则是解答本题的关键,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.4、4m+12##12+4m【解析】【分析】根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.【详解】解:由面积的和差,得长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).由长方形的宽为3,可得长方形的长是(2m+3),长方形的周长是2[(2m+3)+3]=4m+12.故答案为:4m+12.【点睛】本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.5、【解析】【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m的一次方程,求解即可.【详解】解:(2x−m)(3x+5)=6x2−3mx+10x−5m=6x2+(10−3m)x−5m.∵积的一次项系数为25,∴10−3m=25.解得m=−5.故答案为:-5.【点睛】本题考查了多项式乘以多项式和解一元一次方程,掌握多项式乘多项式法则是解决本题的关键.三、解答题1、4-8x【解析】【分析】先根据完全平方公式,单项式乘多项式进行计算,再合并同类项即可.【详解】解:(x﹣2)2﹣x(x+4)=x2-4x+4-x2-4x=4-8x.【点睛】本题考查了整式的化简,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.2、 (1)①6;②3;③0(2)见解析(3)2【解析】【分析】(1)利用对数的定义,即可求解;(2)设,,则,,可得,从而得到,即可求证;(3)根据对数的定义,代入即可求解.(1)解:①∵ ,∴;②∵ ∴;③∵ ,∴;(2)设,,则,,∴,由对数的定义得.又∵∴;(3) .【点睛】本题主要考查了幂的运算,同底数幂相除,明确题意,理解对数的定义是解题的关键.3、2【解析】【分析】乘积之中不含x的一次项,即乘积得到的关于x的代数式中,x的一次项的系数为0,由此可求得参数m的值.【详解】解:.的乘积中不含的一次项,..故答案为:2.【点评】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键.4、 (1)5,10,10,5(2),,(3),理由见解析(4)1【解析】【分析】(1)根据材料二的规律即可得;(2)根据归纳出规律,由此即可得;(3)先求出的展开式的各项系数之和,再归纳出一般规律,由此即可得;(4)参考的展开式即可得.(1)解:由材料二得:,故答案为:5,10,10,5;(2)解:是一次二项式,的展开式是二次三项式,的展开式是三次四项式,则多项式的展开式是次项式,由材料二的图可知,的第三项的系数是,的第三项的系数是,的第三项的系数是,的第三项的系数是,归纳类推得:的第三项的系数是,故答案为:,,;(3)解:多项式取正整数)的展开式的各项系数之和为,理由如下:的展开式的各项系数之和是,的展开式的各项系数之和是,的展开式的各项系数之和是,的展开式的各项系数之和是,归纳类推得:多项式的展开式的各项系数之和为;(4)解:.【点睛】本题考查了多项式的乘法,正确归纳类推出一般规律是解题关键.5、【解析】【分析】根据整式的乘法公式及运算法则化简,合并即可求解.【详解】(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2=a2-4b2-a2+4ab-4b2+8b2=4ab.【点睛】此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.
相关试卷
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试课时作业,共15页。试卷主要包含了下列运算正确的是,计算,下列各式中,不正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试同步测试题,共15页。试卷主要包含了若,则代数式的值为,下列计算错误的是,若的结果中不含项,则的值为等内容,欢迎下载使用。
这是一份初中数学第八章 整式乘法综合与测试同步测试题,共18页。试卷主要包含了已知ax2+24x+b=,下列计算正确的是,若,则的值为等内容,欢迎下载使用。