2021学年第七章 相交线与平行线综合与测试一课一练
展开这是一份2021学年第七章 相交线与平行线综合与测试一课一练,共22页。试卷主要包含了下列说法正确的有,下列命题中,是真命题的是,下列说法正确的是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,直线b、c被直线a所截,则与是( )
A.对顶角 B.同位角 C.内错角 D.同旁内角
2、如图,若AB∥CD,CD∥EF,那么BCE=( )
A.180°-2+1 B.180°-1-2 C.2=21 D.1+2
3、如图,点P是直线m外一点,A、B、C三点在直线m上,PB⊥AC于点B,那么点P到直线m的距离是线段( )的长度.
A.PA B.PB C.PC D.AB
4、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )
A.等于4cm B.小于4cm
C.大于4cm D.不大于4cm
5、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④若AC=BC,则点C是线段AB的中点;
⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.
A.1个 B.2个 C.3个 D.4个
6、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )
A.25° B.27° C.29° D.45°
7、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
8、下列命题中,是真命题的是( )
A.两直线平行,同旁内角相等 B.内错角相等,两直线平行
C.直角三角形的两锐角互补 D.三角形的一个外角大于任何一个内角
9、下列说法正确的是( )
A.不相交的两条直线叫做平行线
B.过一点有且仅有一条直线与已知直线垂直
C.平角是一条直线
D.过同一平面内三点中任意两点,只能画出3条直线
10、如图,小华同学用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小( )
A.垂线段最短
B.经过一点有无数条直线
C.经过两点,有且仅有一条直线
D.两点之间,线段最短
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线 a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=______°.
2、如图,直线AB、CD相交于点O,,那么_________.
3、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:
证明:∵AB被直线GH所截,
∴_____
∵
∴______
∴______________( )(填推理的依据).
4、如图,∠C=90°,线段AB=10cm,线段AD=8cm,线段AC=6cm,则点A到BC的距离为_____cm.
5、如图,已知ABCD,,,则____.
三、解答题(5小题,每小题10分,共计50分)
1、补全下列推理过程:
如图,,,,试说明.
解:,(已知),
(垂直的定义).
( ).
( ).
(已知),
(等量代换).
( ).
2、如图,方格纸中每个小正方形的边长都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).
(1)在图①中,过点P画出AB的平行线,过P点画出表示点P到直线AB距离的垂线段;
(2)在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于 .
3、如图,已知GH、MN分别平分∠AGE、∠DMF,且∠AGH=∠DMN,试说明ABCD的理由.
4、如图,的三个顶点A、B、C在正方形网格中,每小方格的边长都为1cm.请在方格纸上画图并回答下列问题:
(1)延长线段AB到点D,使;
(2)过C点画AB的垂线,垂足为点E;
(3)过A点画直线,交直线CE于点F;
(4)点C到直线AB的距离为线段 的长度.
5、如图,在△ABC中,∠BAC>90°,根据下列要求作图并回答问题.
(1)过点C画直线lAB;
(2)过点A分别画直线BC和直线l的垂线段,垂足分别为点D、E,AE交BC千点F;
(3)线段 的长度是点A到BC的距离.(不要求写画法,只需写出结论即可)
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
【详解】
∠1与∠2是同位角
故选:B
【点睛】
本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
2、A
【解析】
【分析】
根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.
【详解】
∵AB∥CD,CD∥EF,
∴∠1=∠BCD,∠ECD+∠2=180°,
∴BCE=∠BCD+∠ECD=180°-2+1,
故选A.
【点睛】
本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.
3、B
【解析】
【分析】
根据点到直线的距离的定义解答即可.
【详解】
解:∵PB⊥AC于点B,
∴点P到直线m的距离是线段B的长度.
故选:B.
【点睛】
本题主要考查了点到直线的距离的定义,从直线外一点到这条直线的垂线段长度叫点到直线的距离.
4、D
【解析】
【分析】
根据平行线间的距离的定义解答即可.
【详解】
解:分两种情况:
如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,
若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm
直线a与直线b之间的距离不大于4cm.
故选D.
【点睛】
本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.
5、B
【解析】
【分析】
根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.
【详解】
解:①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;
所以,正确的结论有①⑤共2个.
故选:B.
【点睛】
本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.
6、B
【解析】
【分析】
根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.
【详解】
解:∵AD∥BC,
∴∠ABC=∠DAB=54°,∠EBC=∠E,
∵BE平分∠ABC,
∴∠EBC=∠ABC=27°,
∴∠E=27°.
故选:B.
【点睛】
本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.
7、B
【解析】
【分析】
由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
【详解】
解:如图所示:
∵∠1=50°,∠ACB=90°,
∴∠BCD=180°﹣∠1﹣∠BCD=40°,
∵a∥b,
∴∠2=∠BCD=40°.
故选:B.
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
8、B
【解析】
【分析】
利用三角形的性质、平行线的性质和判定进行判断即可.
【详解】
解:两直线平行,同旁内角互补,故A是假命题;
内错角相等,两直线平行,故B是真命题;
直角三角形的两锐角互余,故C是假命题;
三角形的一个外角大于任何一个和它不相邻的内角,故D是假命题;
故答案为B.
【点睛】
本题考查的是命题的真假判断,熟练准确掌握基础知识是解答本题的关键.
9、B
【解析】
【分析】
根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.
【详解】
解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;
过一点有且仅有一条直线与已知直线垂直,故选项B正确;
平角是角的两边在同一直线上的角,故选项C错误;
过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;
故选:B.
【点睛】
此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.
10、D
【解析】
【分析】
根据两点之间,线段最短解答即可.
【详解】
解:用剪刀沿虚线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.
故选:D.
【点睛】
本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.
二、填空题
1、75
【解析】
【分析】
先计算∠AOB的度数,后利用对顶角相等确定即可.
【详解】
如图,根据题意,得∠AOB=135°-60°=75°,
∵∠AOB=∠1,
∴∠1=75°,
2、59.4
【解析】
【分析】
根据邻补角的定义计算即可.
【详解】
解:∵直线AB、CD相交于点O,∠AOD=120°36′,
∴∠AOC=180°-120°36′=59°24′=59.4°,
故答案为:59.4.
【点睛】
本题主要考查了邻补角的性质,掌握角的计算方法是解题的关键.
3、 3 180° AB CD 同旁内角互补,两直线平行
【解析】
【分析】
先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.
【详解】
证明:∵AB被直线GH所截,∠1=112°,
∴∠1=∠3=112°
∵∠2=68°,
∴∠2+∠3=180°,
∴AB∥CD,(同旁内角互补,两直线平行)
故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.
【点睛】
本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.
4、6
【解析】
【分析】
根据点到直线的距离的定义,可得答案.
【详解】
解:因为∠C=90°,
所以AC⊥BC,
所以A到BC的距离是AC,
因为线段AC=6cm,
所以点A到BC的距离为6cm.
故答案为:6.
【点睛】
本题考查了点到直线的距离,明确定义是关键.
5、95°
【解析】
【分析】
过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.
【详解】
解:如图,过点E作EF∥AB,
∵EF//AB,
∴∠BEF+∠ABE=180°,
∵∠ABE=120°,
∴∠BEF=180°-∠ABE=180°-120°=60°,
∵EF//AB,AB//CD,
∴EF//CD,
∴∠FEC=∠DCE,
∵∠DCE=35°,
∴∠FEC=35°,
∴∠BEC=∠BEF+∠FEC=60°+35°=95°.
故答案为:95°
【点睛】
本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
三、解答题
1、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行
【解析】
【分析】
根据题意读懂推理过程中每一步的推理依据即可完成解答.
【详解】
,(已知),
(垂直的定义),
(同位角相等,两直线平行),
(两直线平行,同位角相等),
(已知),
(等量代换),
(内错角相等,两直线平行).
故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.
2、 (1)见解析
(2)4
【解析】
【分析】
(1)直接利用网格结合勾股定理得出答案;
(2)利用平移的性质得出以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积,进而得出答案.
(1)
解:如图①所示:MN∥AB,PD⊥AB;
,
(2)
解:如图②所示:
以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积为:
3×4-×1×2-×2×3-×2×4=4.
故答案为:4.
【点睛】
本题主要考查了应用设计与作图,正确平移线段是解题关键.
3、见解析
【解析】
【分析】
根据角平分线的意义可得∠AGE=2∠AGH,∠DMF=2∠DMN,等量代换可得∠DMF=∠FGB,根据平行线的判定定理即可求得ABCD
【详解】
∵GH平分∠AGE,
∴∠AGE=2∠AGH
同理∠DMF=2∠DMN
∵∠AGH=∠DMN
∴∠AGE=∠DMF
又∵∠AGE=∠FGB
∴∠DMF=∠FGB
∴ABCD (同位角相等,两直线平行).
【点睛】
本题考查了平行线的判定定理,角平分线的意义,掌握平行线的判定定理是解题的关键.
4、 (1)AB=BD,见详解;
(2)CE⊥AD于E,见详解;
(3)AF∥BC;见详解;
(4)CE.
【解析】
【分析】
(1)根据网格的性质,线段中点定义,得出BD=3,延长即可;
(2)根据网格的性质,利用点平移方法即可画出CE⊥AD;
(3)根据网格中小正方形对角线的性质,即可画出AF∥BC;
(4)根据网格的性质, CE⊥AB,根据点到直线的距离得出CE的长即可得
(1)
解:根据题意,得AB=3cm,在AB的延长线上,截取BD=3
则AB=BD,如图所示:
(2)
解:如图所示:点C向下平移2个单位取点E,连结CE,则CE⊥AD于E;
(3)
解:如图所示:∵BE=2=CE,AB=3,
∴AE=AB+BE=3+2=5,
∴点C向上平移3个格到点F,连结AF,则AF∥BC,
∵AF是正方形网格的对角线,CB是正方形网格的对角线,
∴∠FAB=45°,∠CBE=45°,
∵∠FAB=∠CBE=45°,
∴AF∥BC;
(4)
点C到直线AB的距离为线段CE的长度.
故答案为CE.
【点睛】
此题主要考查正方形网格中的作图综合问题,熟练掌握网格的性质,中点定义,垂线定义,平行线判定与性质,点到直线的距离是解题关键.
5、 (1)见解析
(2)见解析
(3)AD
【解析】
【分析】
(1)根据几何语言画出对应的几何图形;
(2)根据几何语言画出对应的几何图形;
(3)根据点到直线的距离的定义求解.
(1)
如图,直线l为所作;
(2)
如图,AD、AE为所作;
(3)
线段AD的长度为点A到BC的距离.
故答案为:AD.
【点睛】
此题考查了点到直线的距离,用直尺、三角板画平行线,作图—复杂作图.正确掌握各作图方法是解题的关键。
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后复习题,共21页。试卷主要包含了生活中常见的探照灯,如图,直线AB等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试习题,共20页。试卷主要包含了生活中常见的探照灯,下列命题中,是假命题的是,以下命题是假命题的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题,共21页。试卷主要包含了以下命题是假命题的是,下列A,如图,直线a等内容,欢迎下载使用。