冀教版七年级下册第七章 相交线与平行线综合与测试达标测试
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共21页。试卷主要包含了直线m外一点P它到直线的上点A,下列说法中不正确的是,如图,直线a,下列命题中,是假命题的是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、在下列汽车标志的图案中,能用图形的平移来分析其形成过程的是( )A. B.C. D.2、如图,直线被所截,下列说法,正确的有( )①与是同旁内角;②与是内错角;③与是同位角;④与是内错角.A.①③④ B.③④ C.①②④ D.①②③④3、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°4、直线m外一点P它到直线的上点A、B、C的距离分别是6cm、5cm、3cm,则点P到直线m的距离为( )A.3cm B.5cm C.6cm D.不大于3cm5、下列说法中不正确的是( )A.平面内,垂直于同一条直线的两直线平行B.过一点有且只有一条直线与已知直线平行C.平面内,过一点有且只有一条直线与已知直线垂直D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离6、如图,直线a、b被直线c所截,下列说法不正确的是( )A.1与5是同位角 B.3与6是同旁内角C.2与4是对顶角 D.5与2是内错角7、下列命题中,是假命题的是( )A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.同旁内角互补,两直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.过一点有且只有一条直线与已知直线平行8、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°9、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )A.100° B.140° C.160° D.105°10、北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的(如图).下面四个图案中,可以通过平移图案得到的是( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要______米.2、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.3、垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的______,它们的交点叫做______.4、如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.5、在同一平面内,过一点有且只有______直线与已知直线垂直.注意:①“过一点”中的点,可以在______,也可以在______;②“有且只有”中,“有”指存在,“只有”指唯一性.三、解答题(5小题,每小题10分,共计50分)1、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.(1)如图1,求∠DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.2、已知一角的两边与另一个角的两边分别平行,试探索这两个角之间的关系,并说明你的结论.(1)如图1所示,,,则与的关系是 ;(2)如图2所示,,,则与的关系是 ;(3)经过上述探索,我们可以得到一个结论(试用文字语言表述): ;(4)若两个角的两边分别平行,且一个角比另一个角的倍少,则这两个分别是多少度?3、如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.(1)过点C画线段AB的平行线CF;(2)过点A画线段BC的垂线,垂足为G;(3)过点A画线段AB的垂线,交BC于点H;(4)线段 的长度是点H到直线AB的距离;(5)线段AG、AH、BH的大小关系是 (用“<”连接),理由是 .4、完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知)∴∠ =90°( )∵∠1=30°,∠B=60°(已知)∴∠1+∠BAC+∠B= ( )即∠ +∠B=180°∴AD∥BC( )5、如图,在ABC中,DEAC,DFAB.(1)判断∠A与∠EDF之间的大小关系,并说明理由.(2)求∠A+∠B+∠C的度数. -参考答案-一、单选题1、C【解析】【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【详解】解:A.不是由“基本图案”经过平移得到,故此选项不合题意;B.不是由“基本图案”经过平移得到,故此选项不合题意;C.是由“基本图案”经过平移得到,故此选项符合题意;D.不是由“基本图案”经过平移得到,故此选项不合题意;故选:C.【点睛】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.2、D【解析】【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①与是同旁内角,说法正确;②与是内错角,说法正确;③与是同位角,说法正确;④与是内错角,说法正确,故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.3、D【解析】【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, , ∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.4、D【解析】【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【详解】解:垂线段最短,点到直线的距离,故选:D.【点睛】本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.5、B【解析】【分析】根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.【详解】A、平面内,垂直于同一条直线的两直线平行,故说法正确;B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.故选:B【点睛】本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.6、D【解析】【分析】根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.【详解】解:A、∠1与∠5是同位角,故本选项不符合题意;B、∠3与∠6是同旁内角,故本选项不符合题意.C、∠2与∠4是对顶角,故本选项不符合题意;D、∠5与2不是内错角,故本选项符合题意.故选:D.【点睛】本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.7、D【解析】【分析】根据垂线公理,平行线的判定,平行线的传递,平行线的性质进行判断即可.【详解】解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,这个命题为真命题;B、同旁内角互补,两直线平行,这个命题为真命题;C、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,这个命题为真命题;D、过直线外一点有且只有一条直线与已知直线平行,故这个命题是假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8、D【解析】【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.9、B【解析】【分析】根据方位角的含义先求解 再利用角的和差关系可得答案.【详解】解:如图,标注字母, 射线AB的方向是北偏东70°,射线AC的方向是南偏西30°, 而 故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.10、A【解析】【分析】根据平移只改变图形的位置不改变图形的形状和大小解答.【详解】解:能通过平移得到的是A选项图案.故选:A【点睛】本题考查了利用平移设计图案,熟记平移变换只改变图形的位置不改变图形的形状并准确识图是解题的关键.二、填空题1、15【解析】【分析】根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.【详解】解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要 12+3=15(米).故答案为:15.【点睛】本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.2、50°##50度【解析】【分析】由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.【详解】解:∵AB∥CD∥EF,∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,∴∠ECD=180°-∠CEF=75°,∴∠BCE=∠BCD-∠ECD=50°,故答案为:50°.【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.3、 垂线 垂足【解析】略4、∠2=150°或∠3=30°【解析】略5、 一条 已知直线上 已知直线外【解析】略三、解答题1、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【解析】【分析】(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.【详解】解:(1)∵EO⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠EOC:∠BOD=7:11,∴∠COE=35°,∠BOD=55°,∴∠DOE=∠BOD+∠BOE=145°;(2)∵MN⊥CD,∴∠COM=90°,∴∠EOM=∠COE+∠COM=125°,∵∠BOD=55°,∴∠BOC=180°-∠BOD=125°,∴∠AOD=∠BOC=125°,∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.2、(1);(2);(3)一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补;(4),【解析】【分析】(1)根据两直线平行,同位角相等,可求出∠1=∠2;(2)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠2=180°;(3)由(1)(2)可得出结论;(4)由(3)可列出方程,求出角的度数.【详解】解:(1)如图1.,.,..故答案为:.(2),.,..故答案为:.(3)由(1)、(2)得:一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补.(4)这两个角分别是、,且.,...这两个角分别为、. 图1 图2【点睛】本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.3、 (1)见解析(2)见解析(3)见解析(4)AH;(5)AG<AH<BH,点到直线的距离,垂线段最短【解析】【分析】(1)根据平行线的判定结合网格画AB的平行线CF即可;(2)根据垂线的定义,结合网格过点A画线段BC的垂线段即可;(3)根据垂线的定义,结合网格过点A画线段AB的垂线,交BC于点H即可;(4)点H到直线AB的距离是过点H垂直于AB的垂线段HA的长;(5)根据点到直线的距离,垂线段最短求解即可.(1)解:如图所示,直线CF即为所求;(2)解:如图所示,线段AG即为所求;(3)解:如图所示,线段AH即为所求;(4)解:由题意得线段AH的长度是点H到直线AB的距离;故答案为:AH;(5)解:∵AG⊥BH,∴AG<AH,∵AH⊥AB,∴AH<BH,∴AG<AH<BH,理由是:点到直线的距离,垂线段最短,故答案为:AG<AH<BH,点到直线的距离,垂线段最短.【点睛】本题主要考查了画平行线,画垂线,点到直线的距离,垂线段最短等等,熟知相关知识是解题的关键.4、见解析【解析】【分析】先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证.【详解】证明:∵(已知),∴(垂直的定义),∵,(已知),∴(等量关系),即,∴(同旁内角互补,两直线平行).【点睛】本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键.5、(1)两角相等,见解析;(2)180°【解析】【分析】(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;【详解】(1)两角相等,理由如下:∵DE∥AC,∴∠A=∠BED(两直线平行,同位角相等).∵DF∥AB,∴∠EDF=∠BED(两直线平行,内错角相等),∴∠A=∠EDF(等量代换).(2)∵DE∥AC,∴∠C=∠EDB(两直线平行,同位角相等).∵DF∥AB,∴∠B=∠FDC(两直线平行,同位角相等).∵∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°(等量代换).【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
相关试卷
这是一份2021学年第七章 相交线与平行线综合与测试一课一练,共22页。试卷主要包含了下列说法正确的有,下列命题中,是真命题的是,下列说法正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第七章 相交线与平行线综合与测试当堂达标检测题,共23页。试卷主要包含了如图,直线AB,下列说法中正确的有等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共25页。试卷主要包含了下列说法正确的有等内容,欢迎下载使用。