数学第七章 相交线与平行线综合与测试课后复习题
展开
这是一份数学第七章 相交线与平行线综合与测试课后复习题,共22页。试卷主要包含了下列命题中,为真命题的是,下列说法正确的是,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,与交于点,与互余,,则的度数为( )A. B. C. D.2、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )A.等于4cm B.小于4cmC.大于4cm D.不大于4cm3、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )A.2cm B.小于2cm C.不大于2cm D.4cm4、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )A.30° B.45° C.60° D.75°5、如图,点在延长线上,下列条件中不能判定的是( )A. B. C. D.6、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等7、一把直尺与一块直角三角板按下图方式摆放,若,则( )A.52° B.53° C.54° D.63°8、下列说法正确的是( )A.不相交的两条直线叫做平行线B.过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线9、如图,下列条件中能判断直线的是( )A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠510、如图,∠1=∠2,则下列结论正确的是( )A.AD∥BC B.AB∥CDC.AD∥EF D.EF∥BC第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、将长度为5cm的线段向上平移10cm,所得线段的长度是_______cm.2、如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=34°,则∠2=_____°.3、在同一平面内有2021条直线a1,a2,a3,…,a2021,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a5的位置关系是_____;a1与a2021的位置关系是_____.4、如图,点O在直线AB上,OD⊥OE,垂足为O.OC是∠DOB的平分线,若∠AOD=70°,则∠COE=__________度.5、如图,∠C=90°,线段AB=10cm,线段AD=8cm,线段AC=6cm,则点A到BC的距离为_____cm.三、解答题(5小题,每小题10分,共计50分)1、如图,,试说明.证明:∵(己知),∴(___________________),∴____________(同位角相等,两直线平行),∵(已知),∴(___________________),∴(___________________),∴(两直线平行,同位角相等).2、如图直线,直线与分别和交于点交直线b于点C.(1)若,直接写出 ;(2)若,则点B到直线的距离是 ;(3)在图中直接画出并求出点A到直线的距离.3、如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OD.(1)若∠AOC=60°,求∠EOF的度数.(2)画OE的反向延长线OG,OG是∠AOC的平分线吗?请说明理由.4、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:. 5、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.(1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;(2)当点E落在直线AC上时,直接写出∠BAD的度数;(3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数. -参考答案-一、单选题1、B【解析】【分析】先由与互余,求解 再利用对顶角相等可得答案.【详解】解:与互余,,,,,故选:B.【点睛】本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.2、D【解析】【分析】根据平行线间的距离的定义解答即可.【详解】解:分两种情况:如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm直线a与直线b之间的距离不大于4cm.故选D.【点睛】本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.3、C【解析】【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,∴点到直线的距离不大于,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.4、D【解析】【分析】由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.【详解】解:∵AC平分∠BAD,∠BAD=90°,∴∠BAC=45°∵BD∥AC,∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,∵∠CBD=∠ABD+∠ABC=45°+60°=105°,∴∠1=75°,故选D.【点睛】本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.5、A【解析】【分析】根据平行线的判定方法直接判定即可.【详解】解:选项B中,,(内错角相等,两直线平行),所以正确;选项C中,,(内错角相等,两直线平行),所以正确;选项D中,,(同旁内角互补,两直线平行),所以正确;而选项A中,与是直线、被所截形成的内错角,因为,所以应是,故A错误.故选:A.【点睛】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6、D【解析】【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.7、B【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,,∴,∴,故选B.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.8、B【解析】【分析】根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.【详解】解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;过一点有且仅有一条直线与已知直线垂直,故选项B正确;平角是角的两边在同一直线上的角,故选项C错误;过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;故选:B.【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.9、C【解析】【分析】利用平行线的判定方法判断即可得到结果.【详解】解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.故选:C.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.10、C【解析】略二、填空题1、5【解析】【分析】根据平移的性质解答.【详解】解:将长度为5cm的线段向上平移10cm,所得线段的长度是5cm,故答案为:5.【点睛】此题考查了平移的性质:平移前后的图形全等,熟记平移的性质是解题的关键.2、56【解析】【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∠1=34°,∴∠3=90°﹣34°=56°.∵直尺的两边互相平行,∴∠2=∠3=56°.故答案为:56.【点睛】本题考查平行线的性质、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、 平行 平行【解析】【分析】根据平行线的性质和规律得到:4条直线的位置关系为一个循环.【详解】如图,a1⊥a2,a2∥a3,∴a1⊥a3,∵a3⊥a4,∴a1∥a4,∵a4∥a5,∴a1∥a5,…,依此类推,a1⊥a6,a1⊥a7,a1∥a8,a1∥a9,连续4条直线的位置关系为一个循环.∴2021=505×4+1,∴a1∥a2021.故答案是:平行;平行.【点睛】本题考查了平行线的性质,解题的关键是找到直线位置关系的规律.4、35【解析】【分析】根据补角的性质,可得∠BOD=110°,再由OC是∠DOB的平分线,可得 ,又由OD⊥OE,可得到∠BOE=20°,即可求解.【详解】解:∵∠AOD=70°,∠AOD+∠BOD=180°,∴∠BOD=110°,∵OC是∠DOB的平分线,∴ ,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=20°,∴∠COE=∠BOC-∠BOE=35°.故答案为:35【点睛】本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.5、6【解析】【分析】根据点到直线的距离的定义,可得答案.【详解】解:因为∠C=90°,所以AC⊥BC,所以A到BC的距离是AC,因为线段AC=6cm,所以点A到BC的距离为6cm.故答案为:6.【点睛】本题考查了点到直线的距离,明确定义是关键.三、解答题1、垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行【解析】【分析】根据垂直定义求出∠B=∠CDF=90°,根据平行线的判定得出AB∥EF,EF∥CD,即可得出答案.【详解】证明:∵(己知),∴(垂直定义),∴ABCD(同位角相等,两直线平行),∵(已知),∴(内错角相等,两直线平行),∴(平行于同一条直线的两条直线平行),∴(两直线平行,同位角相等).故答案为:垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行【点睛】本题考查了平行线的判定的应用,能正确运用判定定理进行推理是解此题的关键,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,④平行于同一直线的两直线平行.2、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.【解析】【分析】(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.【详解】解:(1)∵,∴,∵,,∴,故答案为:;(2)∵,∴点B到直线AC的距离为线段,故答案为:4;(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,∵,∴为直角三角形, ∴,即,解得:,∴点A到直线BC的距离为.【点睛】题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.3、 (1)60°;(2)OG是∠AOC的平分线,理由见解析.【解析】【分析】(1)依据对顶角相等得到∠BOD=60°;根据OE平分∠BOD,即可得出∠DOE=∠BOD=30°,依据OF⊥CD,可得∠EOF=90°−30°=60°;(2)根据角平分线的定义得到∠BOE=∠DOE,根据对顶角的性质得到∠AOG=∠COG,于是得到结论.(1)解:∵直线AB、CD相交于点O,∴∠BOD=∠AOC=60°,∵OE平分∠BOD,∴∠DOE=∠BOD=30°,∵OF⊥CD,∴∠DOF=90°,∴∠EOF=∠DOF -∠DOE=90°−30°=60°;(2)解:如图,画出OE的反向延长线OG如图所示,OG平分∠AOC,理由:∵射线OE平分∠BOD,∴∠BOE=∠DOE,∵∠BOE=∠AOG,∠DOE=∠COG,∴∠AOG=∠COG,∴OG平分∠AOC.【点睛】本题考查了对顶角的性质,角平分线的定义,熟记对顶角的性质和角平分线的定义是解题的关键.4、见解析【解析】【分析】由AB∥CD∥EF可得,,,即可证明.【详解】证明:∵AB∥CD(已知)∴(两直线平行,内错角相等) 又 ∵CD∥EF(已知)∴(两直线平行,内错角相等) ∵(已知)∴(等式性质)【点睛】本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.5、(1);(2);(3)的值为:或.【解析】【分析】(1)先求解 再利用角的和差关系可得答案;(2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;(3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.【详解】解:(1) ∠BAD=18°,∠EAD=∠BAD, (2)当落在的下方时,如图, 当落在的上方时,如图, 而 (3)当落在的内部时,如图, ∠CAE:∠BAD=7:4, 当落在的外部时,如图, ∠CAE:∠BAD=7:4,设则 解得: 综上:的值为:或.【点睛】本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
相关试卷
这是一份2020-2021学年第七章 相交线与平行线综合与测试当堂检测题,共21页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第七章 相交线与平行线综合与测试复习练习题,共21页。试卷主要包含了下列各图中,和是对顶角的是,有下列说法,下列命题中,为真命题的是,下列命题不正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题