初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后作业题
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后作业题,共24页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,点E在的延长线上,能判定的是( )A. B.C. D.2、如图,于O,直线CD经过O,,则的度数是( )A. B. C. D.3、如图,l1∥l2,l3∥l4,与∠α互补的是( )A.∠1 B.∠2 C.∠3 D.∠44、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )A.30° B.60° C.30°或60° D.60°或120°5、一把直尺与一块直角三角板按下图方式摆放,若,则( )A.52° B.53° C.54° D.63°6、如图,已知OE是的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )A. B. C. D.7、如图,给出下列条件,①∠1=∠2,②∠3=∠4,③ADBE,且∠D=∠B,④ADBE,且∠DCE=∠D,其中能推出ABDC的条件为( )A.①② B.②③ C.③④ D.②③④8、下列说法错误的是( )A.经过两点,有且仅有一条直线B.平面内过一点有且只有一条直线与已知直线垂直C.两点之间的所有连线中,线段最短D.平面内过一点有且只有一条直线与已知直线平行9、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°10、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,将三角形沿射线方向平移到三角形的位置,厘米,厘米,则平移距离为__厘米.2、如图,如果______,那么.3、如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.4、完成下面的证明:看图填空:已知如图,于,于,,求证:平分.证明:于,于G(_____),,(_____).(_____).(_____)._____(_____),_____(_____).又(已知),(_____),平分(_____).5、将一把直尺和一块含30°角的直角三角板按如图所示方式摆放,其中∠CBD=90°,∠BDC=30°,若∠1=78°,则∠2的度数为________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知∠ADC=∠ABC,DE、BF分别平分∠ADC和∠ABC,且DE∥BF,那么AB与DC平行吗?为什么?2、如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OD.(1)若∠AOC=60°,求∠EOF的度数.(2)画OE的反向延长线OG,OG是∠AOC的平分线吗?请说明理由.3、如图,,P为,之间的一点,已知,,求∠1的度数.4、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.(1)如图①,若∠BEF=130°,则∠FGC= 度;(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.解:如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC( )又∵EM∥FG∴∠FGC=∠EMC( )∠EFG+∠FEM=180°( )即∠FGC=( )(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC= 即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.5、如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数. -参考答案-一、单选题1、B【解析】【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.【详解】A. ,,故该选项不符合题意;B. ,,故该选项符合题意;C. ,,故该选项不符合题意; D. ,,故该选项不符合题意;故选B【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.2、B【解析】【分析】由OA⊥OB,得出∠AOB=90°,再根据∠AOD=35°,由余角的定义可得出∠BOD,再根据补角的定义可得出∠BOC的度数.【详解】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOD=35°,∴∠BOD=90°-35°=55°,∴∠BOC=180-55°=125°,故选B.【点睛】本题考查了垂线的定义,平角的定义,关键是利用90°和180°的数据进行计算.3、D【解析】【分析】如图,先证明再证明 可得 再利用邻补角的定义可得答案.【详解】解:如图, 所以与∠α互补的是 故选D【点睛】本题考查的是平行线的性质,邻补角的定义,掌握“两直线平行,同位角相等”是解本题的关键.4、D【解析】【分析】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.【详解】解:如图1,∵a∥b,∴∠1=∠α,∵c∥d,∴∠β=∠1=∠α=60°;如图(2),∵a∥b,∴∠α+∠2=180°,∵c∥d,∴∠2=∠β,∴∠β+∠α=180°,∵∠α=60°,∴∠β=120°.综上,∠β=60°或120°.故选:D.【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.5、B【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,,∴,∴,故选B.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.6、B【解析】【分析】根据角平分线定义得到,由于反例要满足角相等且不是对顶角,所以可作为反例.【详解】解:OE是的平分线,可作为说明命题“相等的角是对顶角”为假命题的反例故选:B.【点睛】本题考查命题与定理:判断一件事情的语句叫做命题,命题由题设和结论组成,题设是已知事项,结论是由已知事项推出的事实,一个命题可以写出“如果…那么…”的形式,任何一个命题非真即假,判断一个命题是假命题,只要举出反例即可.7、B【解析】【分析】根据平行线的判定逐个判断即可.【详解】①∠1=∠2,②∠3=∠4,③ADBE, ∠D=∠B,④∠DCE=∠D,能推出ABDC的条件为②③故选B【点睛】本题考查了平行线的性质与判定定理,掌握平行线的判定定理是解题的关键.8、D【解析】【分析】根据垂线的性质、线段的性质、直线的性质、平行公理判断下列选项.【详解】解:由垂线的性质、线段的性质、直线的性质可知、、正确;A、根据直线的性质可知选项正确,不符合题意;B、根据垂线的性质可知选项正确,不符合题意;C、根据线段的性质可知选项正确,不符合题意;D、由平行公理可知选项不正确,需要保证该点不在已知直线上,符合题意;故选:D.【点睛】本题主要考查了垂线的性质、线段的性质、直线的性质、平行公理,解题的关键是掌握相关的概念.9、D【解析】【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, , ∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.10、A【解析】【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.二、填空题1、3【解析】【分析】根据平移的性质和线段的和差关系即可求得即平移的距离【详解】解:由平移的性质可知,平移的距离,故答案为:3.【点睛】本题考查了平移的性质,掌握平移的性质是解题的关键.2、##∠ABC##∠CBA【解析】【分析】根据平行线的判定定理即可得到结论.【详解】解:,.故答案为.【点睛】本题考查了平行线的判定定理,熟练掌握同旁内角互补两直线平行是解题的关键.3、∠2=150°或∠3=30°【解析】略4、已知;垂直定义;等量代换;同位角相等,两直线平行;3,两直线平行,内错角相等;,两直线平行,同位角相等;等量代换;角平分线的定义【解析】【分析】根据平行线的性质,平行线的判定等相关知识解答即可.【详解】证明:于,于(已知),,(垂直定义).(等量代换).(同位角相等,两直线平行).(两直线平行,内错角相等),(两直线平行,同位角相等).又(已知),(等量代换),平分(角平分线的定义).故答案为:已知;垂直定义;等量代换;同位角相等,两直线平行;3,两直线平行,内错角相等;,两直线平行,同位角相等;等量代换;角平分线的定义.【点睛】本题考查了平行线的性质和判定,垂直即两条直角相交所成的四个角中,有一个直角;角的平分线即从角的顶点出发的射线把角分成两个相等的角,熟练掌握平行线的性质和判定是解题的关键.5、18°##18度【解析】【分析】根据平角及已知条件可得,由平行线的性质可得,结合图形求解即可得.【详解】解:∵,,∴,∵四边形AEGH为矩形,∴,∴,∵,∴,故答案为:.【点睛】题目主要考查角度的计算及平行线的性质,理解题意,结合图形求角度是解题关键.三、解答题1、AB∥DC,理由见解析.【解析】【分析】根据平行线的性质推出∠DEA=∠FBA,再根据角平分线性质推出∠CDE=∠FBA,等量代换得到∠CDE=∠DEA,根据平行线的判定推出即可.【详解】解:AB∥DC,理由如下:∵DE∥BF,∴∠DEA=∠FBA,∵∠ADC=∠ABC,DE、BF分别平分∠ADC和∠ABC,∴∠CDE=∠CDA=∠CBA=∠FBA=∠DEA,∴AB∥DC.【点睛】本题主要考查对平行线的性质和判定,角平分线性质等知识点的理解和掌握,能推出∠CDE=∠DEA是解此题的关键.2、 (1)60°;(2)OG是∠AOC的平分线,理由见解析.【解析】【分析】(1)依据对顶角相等得到∠BOD=60°;根据OE平分∠BOD,即可得出∠DOE=∠BOD=30°,依据OF⊥CD,可得∠EOF=90°−30°=60°;(2)根据角平分线的定义得到∠BOE=∠DOE,根据对顶角的性质得到∠AOG=∠COG,于是得到结论.(1)解:∵直线AB、CD相交于点O,∴∠BOD=∠AOC=60°,∵OE平分∠BOD,∴∠DOE=∠BOD=30°,∵OF⊥CD,∴∠DOF=90°,∴∠EOF=∠DOF -∠DOE=90°−30°=60°;(2)解:如图,画出OE的反向延长线OG如图所示,OG平分∠AOC,理由:∵射线OE平分∠BOD,∴∠BOE=∠DOE,∵∠BOE=∠AOG,∠DOE=∠COG,∴∠AOG=∠COG,∴OG平分∠AOC.【点睛】本题考查了对顶角的性质,角平分线的定义,熟记对顶角的性质和角平分线的定义是解题的关键.3、30°【解析】【分析】首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.【详解】过点P作射线,如图①.∵,,∴.∴.∵,∴.又∵.∴. 【点睛】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.4、(1)40°;(2)见解析;(3)70°【解析】【分析】(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;(2)根据题目补充理由和相关结论即可;(3)类似(2)中的方法求解即可.【详解】解:(1)过点F作FN∥AB,∵FN∥AB,∠FEB=130°,∴∠EFN+∠FEB=180°,∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,∵∠EFG=90°,∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,∵AB∥CD,∴FN∥CD,∴∠FGC=∠NFG=40°.故答案为:40°;(2)如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC(两直线平行,内错角相等)又∵EM∥FG∴∠FGC=∠EMC(两直线平行,同位角相等)∠EFG+∠FEM=180°(两直线平行,同旁内角互补)即∠FGC=(∠BEM)(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC=90°故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°(3)过点E作EH∥FG,交CD于点H.∵AB∥CD∴∠BEH=∠EHC又∵EM∥FG∴∠FGC=∠EHC∠EFG+∠FEH=180°即∠FGC=∠BEH∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH又∵∠EFG=110°∴∠FEH=70°∴∠FEB﹣∠FGC=70°故答案为:70°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.5、59°【解析】【分析】求出∠DEG,证明∠DEG+∠CEF=90°即可解决问题.【详解】解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试当堂达标检测题,共22页。试卷主要包含了下列语句正确的个数是,下列命题是真命题的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试复习练习题,共24页。试卷主要包含了以下命题是假命题的是,如图,直线a等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步达标检测题,共24页。试卷主要包含了以下命题是假命题的是等内容,欢迎下载使用。