搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版七年级数学下册第七章相交线与平行线专题训练练习题(精选)

    精品试题冀教版七年级数学下册第七章相交线与平行线专题训练练习题(精选)第1页
    精品试题冀教版七年级数学下册第七章相交线与平行线专题训练练习题(精选)第2页
    精品试题冀教版七年级数学下册第七章相交线与平行线专题训练练习题(精选)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版七年级下册第七章 相交线与平行线综合与测试达标测试

    展开

    这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共25页。试卷主要包含了下列命题中是假命题的是,下列说法正确的是等内容,欢迎下载使用。
    冀教版七年级数学下册第七章相交线与平行线专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  0分)一、单选题(10小题,每小题0分,共计0分)1、如图,一定能推出的条件是(       A. B. C. D.2、下列ABCD四幅图案中,能通过平移图案得到的是(  )A.  B. C.  D.3、如图,直线被所截,下列说法,正确的有(       是同旁内角;是内错角;是同位角;是内错角.A.①③④ B.③④ C.①②④ D.①②③④4、下列命题中是假命题的是(            A.两直线平行,同位角相等 B.同旁内角互补,两直线平行C.垂直于同一直线的两直线平行 D.对顶角相等5、如图,∠1=∠2,则下列结论正确的是(     A.ADBC B.ABCDC.ADEF D.EFBC6、已知直线mn,如图,下列哪条线段的长可以表示直线之间的距离(       A.只有 B.只有 C.均可 D.均可7、下列说法正确的是 (   )A.不相交的两条直线是平行线.B.如果线段AB与线段CD不相交,那么直线AB与直线CD平行.C.同一平面内,不相交的两条射线叫做平行线.D.同一平面内,没有公共点的两条直线是平行线.8、如图,小华同学用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小(       A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短9、如图所示,ABCD,若∠2=2∠1﹣6°,则∠2等于(  )A.116° B.118° C.120° D.124°10、如图,直线ABCD相交于点OOE平分∠AOC,且∠BOE=140°,则∠BOC为(  )A.140° B.100° C.80° D.40°第Ⅱ卷(非选择题  100分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线ABCD相交于点O,∠AOD=100°,那么∠BOD=______.2、如图,ABCDEF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.3、如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要______米.4、如图,AC平分∠DAB,∠1=∠2,试说明证明:∵AC平分∠DAB(       ),∴∠1=∠______(        ),又∵∠1=∠2(        ),∴∠2=∠______(        ),AB______(        ).5、如图,已知ABCD,则____.三、解答题(5小题,每小题10分,共计50分)1、如图1,直线ACBD,直线ACBD及直线AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六个部分.点P是其中的一个动点,连接PAPB,观察∠APB、∠PAC、∠PBD三个角.规定:直线ACBDAB上的各点不属于(1)、(2)、(3)、(4)、(5)、(6)六个部分中的任何一个部分.(1)当动点P落在第(1)部分时,可得:∠APB=∠PAC+∠PBD,请阅读下面的解答过程,并在相应的括号内填注理由过点PEFAC,如图2因为ACBD(已知),EFAC(所作),所以EFBD______.所以∠BPE=∠PBD______.同理∠APE=∠PAC因此∠APE+∠BPE=∠PAC+∠PBD______,即∠APB=∠PAC+∠PBD(2)当动点P落在第(2)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出∠APB、∠PAC、∠PBD之间满足的关系式,不必说明理由.(3)当动点P在第(3)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.(4)当动点P在第(4)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.2、阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FGCD,∠1 = ∠3.求证:∠B + ∠BDE= 180°.解:因为FGCD(已知),所以∠1=        又因为∠1 = ∠3 (已知),所以∠2 =         (等量代换).所以BC                     ),所以∠B + ∠BDE = 180°(___________________).3、如图,∠ENC+∠CMG=180°,ABCD(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.4、如图1,把一块含30°的直角三角板ABCBC边放置于长方形直尺DEFGEF边上.(1)填空:1=_____°,2= _____°;(2)现把三角板绕B点逆时针旋转n°.如图2,当0<n<90,且点C恰好落在DG边上时,①请直接写出2=_____°(结果用含n的代数式表示)②若1与2怡好有一个角是另一个角的倍,求n的值(3)若把三角板绕B点顺时针旋转n°.当0<n<360时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.5、完成下列说理过程(括号中填写推理的依据):已知:如图,直线ABCD相交于点O.求证:证明:.(            直线ABCD相交于点O        .(            直线相交于                 .(              -参考答案-一、单选题1、D【解析】【分析】平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行;根据平行线的判定方法逐一判定即可.【详解】解:A.是直线被直线所截所成的内错角,不能推出,故本选项不符合题意;B.是直线被直线所截所成的内错角,不能推出,故本选项不符合题意;C.是直线被直线所截所成的内错角,但不能判定不能判定是直线被直线所截所成的同位角,但不能判定不能判定不能推出,故本选项不符合题意;D.是直线被直线所截所成的同位角,能推出,故本选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,熟记同位角相等,两直线平行是解决问题的关键.2、D【解析】【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.【详解】解:由平移的性质可知,不改变图形的形状、大小和方向,只有D选项符合要求,故选:D【点睛】本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3、D【解析】【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①是同旁内角,说法正确;是内错角,说法正确;是同位角,说法正确;是内错角,说法正确,故选:D【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.4、C【解析】【分析】根据平行线的性质与判定,对顶角的性质,逐项分析判断即可【详解】解:A. 两直线平行,同位角相等,故该选项是真命题,不符合题意;       B. 同旁内角互补,两直线平行,故该选项是真命题,不符合题意;C. 同一平面内,垂直于同一直线的两直线平行,故该选项是假命题,符合题意;       D. 对顶角相等,故该选项是真命题,不符合题意;故选C【点睛】本题考查了真假命题的判断,掌握平行线的性质与判定,对顶角的性质是解题的关键.5、C【解析】6、C【解析】【分析】由平行线之间的距离的定义判定即可得解.【详解】解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,线段都可以示直线之间的距离,故选:C.【点睛】本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.7、D【解析】【分析】根据平行线的定义逐项分析即可.【详解】A、同一平面内不相交的两条直线是平行线,故此说法错误;B、两条线段不相交也可以不平行,故此说法错误;C、同一平面内,不相交的两条射线可以平行,也可以既不平行也不相交,故此说法错误;D、同一平面内,没有公共点的两条直线是平行线,此说法正确,故选D.【点睛】本题考查了平行线的定义,理解此定义是关键,属于概念基础题.8、D【解析】【分析】根据两点之间,线段最短解答即可.【详解】解:用剪刀沿虚线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.9、B【解析】【分析】ABCD平行,利用两直线平行同旁内角互补得到∠2+∠3=180°,由对顶角相等得到∠1=∠3,等量代换得到∠1=180°-∠2,再代入∠2=2∠1﹣6°,即可求出∠2的度数.【详解】解:如图:ABCD∴∠2+∠3=180°,∴∠3=180°-∠2,∵∠1=∠3,∴∠1=180°-∠2,∴∠2=2(180°-∠2)﹣6°,∴∠2=118°,故选:B【点睛】此题考查了对顶角性质和平行线的性质,掌握两直线平行同旁内角互补是解答此题的关键.10、B【解析】【分析】根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.【详解】解:∵∠AOE+∠BOE=180°,∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,又∵OE平分∠AOC∴∠AOE=∠COE=40°,∴∠BOC=∠BOE﹣∠COE=140°﹣40°=100°,故选:B.【点睛】本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.二、填空题1、80°##80度【解析】【分析】根据邻补角的定义,即可解答.【详解】解:∵∠AOD+∠BOD=180°,∴∠BOD =180°-∠AOD=180°-100°=80°,故答案为:80°.【点睛】本题考查了邻补角的定义,如果两个角有一条公共边,其余两边互为反向延长线,那么这两个角互为邻补角,互为邻补角两个角的和等于180°.2、50°##50度【解析】【分析】ABCDEF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.【详解】解:∵ABCDEF∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,∴∠ECD=180°-∠CEF=75°,∴∠BCE=∠BCD-∠ECD=50°,故答案为:50°.【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.3、15【解析】【分析】根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.【详解】解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要 12+3=15(米).故答案为:15.【点睛】本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.4、     已知     3     角平分线的定义     已知     3     等量代换     CD     内错角相等,两直线平行【解析】【分析】根据平行线证明对书写过程的要求和格式填写即可.【详解】证明:∵AC平分∠DAB(已知),∴∠1=∠   3   (角平分线的定义),又∵∠1=∠2(已知),∴∠2=∠   3   (等量代换),ABCD (内错角相等,两直线平行).故答案为:已知;3;角平分线的定义;已知;3;等量代换;CD;内错角相等,两直线平行【点睛】本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.5、95°【解析】【分析】过点EEFAB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.【详解】解:如图,过点EEFABEF//AB∴∠BEF+∠ABE=180°,∵∠ABE=120°,∴∠BEF=180°-∠ABE=180°-120°=60°,EF//ABAB//CDEF//CD∴∠FEC=∠DCE∵∠DCE=35°,∴∠FEC=35°,∴∠BEC=∠BEF+∠FEC=60°+35°=95°.故答案为:95°【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.三、解答题1、 (1)平行于同一直线的两直线平行;两直线平行,内错角相等;等式性质;(2)∠APB+∠PAC+∠PBD=180°(3)∠PAC=∠APB+∠PBD(4)∠PAC+∠APB=∠PBD【解析】【分析】(1)根据平行公理、平行线的性质、等式的性质分别解答;(2)过点PEFAC,证明EFBD,推出∠BPF+∠PBD=180°,同理∠APF+PAC=180°.由此得到结论∠APB+∠PAC+∠PBD=360°;(3)过点PEFAC,如图4,根据平行线的性质可得出∠PAC=∠APB+∠PBD(4)过点PEFAC,如图5,根据平行线的性质可得出∠PAC+∠APB=∠PBD.(1)解:过点PEFAC,如图2因为ACBD(已知),EFAC(所作),所以EFBD平行于同一直线的两直线平行所以∠BPE=∠PBD两直线平行,内错角相等同理∠APE=∠PAC因此∠APE+∠BPE=∠PAC+∠PBD等式的性质即∠APB=∠PAC+∠PBD故答案为:平行于同一直线的两直线平行;两直线平行,内错角相等;等式性质;(2)解:过点PEFAC,如图(3),因为ACBDEFAC所以EFBD所以∠BPF+∠PBD=180°同理∠APF+PAC=180°.因此∠APF+∠BPF+∠PAC+∠PBD=360°,即∠APB+PAC+∠PBD=360°.(3)解:过点PEFAC,如图4,ACBDEFACEFBD∴∠MPF=∠PBD.∠APF+PAC=180°.∵∠APF+∠MPF+∠APB =180°,∴∠PAC=∠APB+∠PBD(4)解:过点PEFAC,如图5,ACBDEFACEFBD∴∠MPF=∠PBD.∠APN=PAC∵∠MPF=∠NPB =∠APB+∠APN∴∠PAC+∠APB=∠PBD.【点睛】本题考查了平行公理,平行线的性质以及数形结合思想的应用,是基础知识比较简单.2、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【解析】【分析】首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.【详解】解:因为FGCD(已知),所以∠1=∠2.又因为∠1 = ∠3 (已知),所以∠2 =∠3(等量代换).所以(内错角相等,两直线平行),所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.3、(1)见解析;(2)34°【解析】【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FGED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN∴∠ENC+∠FMN=180°,FGED∴∠2=∠DABCD∴∠3=∠D∴∠2=∠3;(2)解:∵ABCD∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,ABCD∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.4、(1)120°,90°;(2)①90°+n°;②n的值为;(3)当n=30°时,ABDGEF);当n=90°时,BCDGEF),ACDEGF);当n=120°时,ABDEGF);当n=180°时,ACDG EF),BCDEGF);当n=210°时,ABDG EF);当n=270°时,BCDG EF),ACDEGF);当n=300°时,ABDE GF).【解析】【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,再分∠1=∠2和∠2=∠1分别求解即可;(3)结合图形,分ABBCAC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°−60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵DGEF∴∠BCG=180°−∠CBF=180°−n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°−∠ACB−∠BCG=360°−90°−(180°−n°)=90°+n°;故答案为:90°+n°;②∵∠ABC=60°,∴∠ABE=180°−60°−n°=120°−n°,DGEF∴∠1=∠ABE=120°−n°,若∠1=∠2,则120°−n°=(90°+n°),解得n=若∠2=∠1,则90°+n°=(120°−n°),解得n=所以n的值为(3)当n=30°时,ABDGEF);n=90°时,BCDGEF),ACDEGF);n=120°时,ABDEGF);n=180°时,ACDG EF),BCDEGF);n=210°时,ABDG EF);n=270°时,BCDG EF),ACDEGF);n=300°时,ABDE GF).【点睛】本题考查了角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.5、①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等【解析】【分析】根据证明过程判断从上一步到下一步的理由即可.【详解】证明:.(①角平分线定义)直线ABCD相交于点O.(等角的余角相等)直线相交于.(⑤同角的补角相等)故答案为:①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等【点睛】本题考查了对顶角、余角和补角的性质、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键. 

    相关试卷

    2021学年第七章 相交线与平行线综合与测试一课一练:

    这是一份2021学年第七章 相交线与平行线综合与测试一课一练,共22页。试卷主要包含了下列说法正确的有,下列命题中,是真命题的是,下列说法正确的是等内容,欢迎下载使用。

    2020-2021学年第七章 相交线与平行线综合与测试当堂达标检测题:

    这是一份2020-2021学年第七章 相交线与平行线综合与测试当堂达标检测题,共23页。试卷主要包含了如图,直线AB,下列说法中正确的有等内容,欢迎下载使用。

    数学七年级下册第七章 相交线与平行线综合与测试随堂练习题:

    这是一份数学七年级下册第七章 相交线与平行线综合与测试随堂练习题,共22页。试卷主要包含了下列说法正确的有,下列说法错误的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map