冀教版七年级下册第七章 相交线与平行线综合与测试达标测试
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共25页。试卷主要包含了下列命题中是假命题的是,下列说法正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,一定能推出的条件是( )A. B. C. D.2、下列A、B、C、D四幅图案中,能通过平移图案得到的是( )A. B. C. D.3、如图,直线被所截,下列说法,正确的有( )①与是同旁内角;②与是内错角;③与是同位角;④与是内错角.A.①③④ B.③④ C.①②④ D.①②③④4、下列命题中是假命题的是( )A.两直线平行,同位角相等 B.同旁内角互补,两直线平行C.垂直于同一直线的两直线平行 D.对顶角相等5、如图,∠1=∠2,则下列结论正确的是( )A.AD∥BC B.AB∥CDC.AD∥EF D.EF∥BC6、已知直线mn,如图,下列哪条线段的长可以表示直线与之间的距离( )A.只有 B.只有 C.和均可 D.和均可7、下列说法正确的是 ( )A.不相交的两条直线是平行线.B.如果线段AB与线段CD不相交,那么直线AB与直线CD平行.C.同一平面内,不相交的两条射线叫做平行线.D.同一平面内,没有公共点的两条直线是平行线.8、如图,小华同学用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小( )A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短9、如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于( )A.116° B.118° C.120° D.124°10、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )A.140° B.100° C.80° D.40°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB、CD相交于点O,∠AOD=100°,那么∠BOD=______.2、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.3、如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要______米.4、如图,AC平分∠DAB,∠1=∠2,试说明.证明:∵AC平分∠DAB( ),∴∠1=∠______( ),又∵∠1=∠2( ),∴∠2=∠______( ),∴AB______( ).5、如图,已知ABCD,,,则____.三、解答题(5小题,每小题10分,共计50分)1、如图1,直线AC∥BD,直线AC、BD及直线AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六个部分.点P是其中的一个动点,连接PA、PB,观察∠APB、∠PAC、∠PBD三个角.规定:直线AC、BD、AB上的各点不属于(1)、(2)、(3)、(4)、(5)、(6)六个部分中的任何一个部分.(1)当动点P落在第(1)部分时,可得:∠APB=∠PAC+∠PBD,请阅读下面的解答过程,并在相应的括号内填注理由过点P作EF∥AC,如图2因为AC∥BD(已知),EF∥AC(所作),所以EF∥BD______.所以∠BPE=∠PBD______.同理∠APE=∠PAC.因此∠APE+∠BPE=∠PAC+∠PBD______,即∠APB=∠PAC+∠PBD.(2)当动点P落在第(2)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出∠APB、∠PAC、∠PBD之间满足的关系式,不必说明理由.(3)当动点P在第(3)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.(4)当动点P在第(4)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.2、阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FGCD,∠1 = ∠3.求证:∠B + ∠BDE= 180°.解:因为FGCD(已知),所以∠1= .又因为∠1 = ∠3 (已知),所以∠2 = (等量代换).所以BC ( ),所以∠B + ∠BDE = 180°(___________________).3、如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.4、如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)填空:1=_____°,2= _____°;(2)现把三角板绕B点逆时针旋转n°.如图2,当0<n<90,且点C恰好落在DG边上时,①请直接写出2=_____°(结果用含n的代数式表示)②若1与2怡好有一个角是另一个角的倍,求n的值(3)若把三角板绕B点顺时针旋转n°.当0<n<360时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.5、完成下列说理过程(括号中填写推理的依据):已知:如图,直线AB,CD相交于点O,.求证:.证明:,.( ① ),.直线AB,CD相交于点O,..= ② .( ③ )直线相交于,. ④ .( ⑤ ). -参考答案-一、单选题1、D【解析】【分析】平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行;根据平行线的判定方法逐一判定即可.【详解】解:A.和是直线和被直线所截所成的内错角,不能推出,故本选项不符合题意;B.和是直线和被直线所截所成的内错角,不能推出,故本选项不符合题意;C.和是直线和被直线所截所成的内错角,但不能判定,不能判定,和是直线和被直线所截所成的同位角,但不能判定,不能判定,不能推出,故本选项不符合题意;D.和是直线和被直线所截所成的同位角,能推出,故本选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,熟记同位角相等,两直线平行是解决问题的关键.2、D【解析】【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.【详解】解:由平移的性质可知,不改变图形的形状、大小和方向,只有D选项符合要求,故选:D.【点睛】本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3、D【解析】【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①与是同旁内角,说法正确;②与是内错角,说法正确;③与是同位角,说法正确;④与是内错角,说法正确,故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.4、C【解析】【分析】根据平行线的性质与判定,对顶角的性质,逐项分析判断即可【详解】解:A. 两直线平行,同位角相等,故该选项是真命题,不符合题意; B. 同旁内角互补,两直线平行,故该选项是真命题,不符合题意;C. 同一平面内,垂直于同一直线的两直线平行,故该选项是假命题,符合题意; D. 对顶角相等,故该选项是真命题,不符合题意;故选C【点睛】本题考查了真假命题的判断,掌握平行线的性质与判定,对顶角的性质是解题的关键.5、C【解析】略6、C【解析】【分析】由平行线之间的距离的定义判定即可得解.【详解】解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,线段和都可以示直线与之间的距离,故选:C.【点睛】本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.7、D【解析】【分析】根据平行线的定义逐项分析即可.【详解】A、同一平面内不相交的两条直线是平行线,故此说法错误;B、两条线段不相交也可以不平行,故此说法错误;C、同一平面内,不相交的两条射线可以平行,也可以既不平行也不相交,故此说法错误;D、同一平面内,没有公共点的两条直线是平行线,此说法正确,故选D.【点睛】本题考查了平行线的定义,理解此定义是关键,属于概念基础题.8、D【解析】【分析】根据两点之间,线段最短解答即可.【详解】解:用剪刀沿虚线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.9、B【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补得到∠2+∠3=180°,由对顶角相等得到∠1=∠3,等量代换得到∠1=180°-∠2,再代入∠2=2∠1﹣6°,即可求出∠2的度数.【详解】解:如图:∵AB∥CD,∴∠2+∠3=180°,∴∠3=180°-∠2,∵∠1=∠3,∴∠1=180°-∠2,∴∠2=2(180°-∠2)﹣6°,∴∠2=118°,故选:B.【点睛】此题考查了对顶角性质和平行线的性质,掌握两直线平行同旁内角互补是解答此题的关键.10、B【解析】【分析】根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.【详解】解:∵∠AOE+∠BOE=180°,∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,又∵OE平分∠AOC,∴∠AOE=∠COE=40°,∴∠BOC=∠BOE﹣∠COE=140°﹣40°=100°,故选:B.【点睛】本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.二、填空题1、80°##80度【解析】【分析】根据邻补角的定义,即可解答.【详解】解:∵∠AOD+∠BOD=180°,∴∠BOD =180°-∠AOD=180°-100°=80°,故答案为:80°.【点睛】本题考查了邻补角的定义,如果两个角有一条公共边,其余两边互为反向延长线,那么这两个角互为邻补角,互为邻补角两个角的和等于180°.2、50°##50度【解析】【分析】由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.【详解】解:∵AB∥CD∥EF,∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,∴∠ECD=180°-∠CEF=75°,∴∠BCE=∠BCD-∠ECD=50°,故答案为:50°.【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.3、15【解析】【分析】根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.【详解】解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要 12+3=15(米).故答案为:15.【点睛】本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.4、 已知 3 角平分线的定义 已知 3 等量代换 CD 内错角相等,两直线平行【解析】【分析】根据平行线证明对书写过程的要求和格式填写即可.【详解】证明:∵AC平分∠DAB(已知),∴∠1=∠ 3 (角平分线的定义),又∵∠1=∠2(已知),∴∠2=∠ 3 (等量代换),∴AB∥CD (内错角相等,两直线平行).故答案为:已知;3;角平分线的定义;已知;3;等量代换;CD;内错角相等,两直线平行【点睛】本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.5、95°【解析】【分析】过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.【详解】解:如图,过点E作EF∥AB,∵EF//AB,∴∠BEF+∠ABE=180°,∵∠ABE=120°,∴∠BEF=180°-∠ABE=180°-120°=60°,∵EF//AB,AB//CD,∴EF//CD,∴∠FEC=∠DCE,∵∠DCE=35°,∴∠FEC=35°,∴∠BEC=∠BEF+∠FEC=60°+35°=95°.故答案为:95°【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.三、解答题1、 (1)平行于同一直线的两直线平行;两直线平行,内错角相等;等式性质;(2)∠APB+∠PAC+∠PBD=180°(3)∠PAC=∠APB+∠PBD(4)∠PAC+∠APB=∠PBD【解析】【分析】(1)根据平行公理、平行线的性质、等式的性质分别解答;(2)过点P作EF∥AC,证明EF∥BD,推出∠BPF+∠PBD=180°,同理∠APF+∠PAC=180°.由此得到结论∠APB+∠PAC+∠PBD=360°;(3)过点P作EF∥AC,如图4,根据平行线的性质可得出∠PAC=∠APB+∠PBD;(4)过点P作EF∥AC,如图5,根据平行线的性质可得出∠PAC+∠APB=∠PBD.(1)解:过点P作EF∥AC,如图2因为AC∥BD(已知),EF∥AC(所作),所以EF∥BD平行于同一直线的两直线平行.所以∠BPE=∠PBD两直线平行,内错角相等.同理∠APE=∠PAC.因此∠APE+∠BPE=∠PAC+∠PBD等式的性质,即∠APB=∠PAC+∠PBD.故答案为:平行于同一直线的两直线平行;两直线平行,内错角相等;等式性质;(2)解:过点P作EF∥AC,如图(3),因为AC∥BD,EF∥AC,所以EF∥BD.所以∠BPF+∠PBD=180°.同理∠APF+∠PAC=180°.因此∠APF+∠BPF+∠PAC+∠PBD=360°,即∠APB+∠PAC+∠PBD=360°.(3)解:过点P作EF ∥ AC,如图4,∵AC∥BD,EF∥AC,∴EF∥BD.∴∠MPF=∠PBD.∠APF+∠PAC=180°.∵∠APF+∠MPF+∠APB =180°,∴∠PAC=∠APB+∠PBD;(4)解:过点P作EF ∥ AC,如图5,∵AC∥BD,EF∥AC,∴EF∥BD.∴∠MPF=∠PBD.∠APN=∠PAC.∵∠MPF=∠NPB =∠APB+∠APN,∴∠PAC+∠APB=∠PBD.【点睛】本题考查了平行公理,平行线的性质以及数形结合思想的应用,是基础知识比较简单.2、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【解析】【分析】首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.【详解】解:因为FGCD(已知),所以∠1=∠2.又因为∠1 = ∠3 (已知),所以∠2 =∠3(等量代换).所以(内错角相等,两直线平行),所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.3、(1)见解析;(2)34°【解析】【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,∴∠ENC+∠FMN=180°,∴FG∥ED,∴∠2=∠D,∵AB∥CD,∴∠3=∠D,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,∵AB∥CD,∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.4、(1)120°,90°;(2)①90°+n°;②n的值为或;(3)当n=30°时,AB⊥DG(EF);当n=90°时,BC⊥DG(EF),AC⊥DE(GF);当n=120°时,AB⊥DE(GF);当n=180°时,AC⊥DG (EF),BC⊥DE(GF);当n=210°时,AB⊥DG (EF);当n=270°时,BC⊥DG (EF),AC⊥DE(GF);当n=300°时,AB⊥DE (GF).【解析】【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,再分∠1=∠2和∠2=∠1分别求解即可;(3)结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°−60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵DG∥EF,∴∠BCG=180°−∠CBF=180°−n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°−∠ACB−∠BCG=360°−90°−(180°−n°)=90°+n°;故答案为:90°+n°;②∵∠ABC=60°,∴∠ABE=180°−60°−n°=120°−n°,∵DG∥EF,∴∠1=∠ABE=120°−n°,若∠1=∠2,则120°−n°=(90°+n°),解得n=;若∠2=∠1,则90°+n°=(120°−n°),解得n=;所以n的值为或;(3)当n=30°时,AB⊥DG(EF);当n=90°时,BC⊥DG(EF),AC⊥DE(GF);当n=120°时,AB⊥DE(GF);当n=180°时,AC⊥DG (EF),BC⊥DE(GF);当n=210°时,AB⊥DG (EF);当n=270°时,BC⊥DG (EF),AC⊥DE(GF);当n=300°时,AB⊥DE (GF).【点睛】本题考查了角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.5、①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等【解析】【分析】根据证明过程判断从上一步到下一步的理由即可.【详解】证明:,.(①角平分线定义),.直线AB,CD相交于点O,..=②.(③等角的余角相等)直线相交于,. ④.(⑤同角的补角相等).故答案为:①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等【点睛】本题考查了对顶角、余角和补角的性质、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.
相关试卷
这是一份2021学年第七章 相交线与平行线综合与测试一课一练,共22页。试卷主要包含了下列说法正确的有,下列命题中,是真命题的是,下列说法正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第七章 相交线与平行线综合与测试当堂达标检测题,共23页。试卷主要包含了如图,直线AB,下列说法中正确的有等内容,欢迎下载使用。
这是一份数学七年级下册第七章 相交线与平行线综合与测试随堂练习题,共22页。试卷主要包含了下列说法正确的有,下列说法错误的是等内容,欢迎下载使用。