冀教版七年级下册第七章 相交线与平行线综合与测试练习
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试练习,共23页。试卷主要包含了下列说法中,错误的是等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )A.3.5 B.4 C.5 D.5.52、如图,点E在的延长线上,能判定的是( )A. B.C. D.3、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°A. B. C. D.4、如图,点O在直线BD上,已知,,则的度数为( ).A.20° B.70° C.80° D.90°5、如图,点,,,在同一条直线上,,,则的度数是( )A. B. C. D.6、如图,△ABC沿BC方向平移到△DEF的位置,若BE=3cm,则平移的距离为( )A.1cm B.2cm C.3cm D.4cm7、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )A.25° B.27° C.29° D.45°8、下列说法中,错误的是( )A.两点之间线段最短B.若AC=BC,则点C是线段AB的中点C.过直线外一点有且只有一条直线与已知直线平行D.平面内过直线外一点有且只有一条直线与已知直线垂直9、一把直尺与一块直角三角板按下图方式摆放,若,则( )A.52° B.53° C.54° D.63°10、如图,给出下列条件,①∠1=∠2,②∠3=∠4,③ADBE,且∠D=∠B,④ADBE,且∠DCE=∠D,其中能推出ABDC的条件为( )A.①② B.②③ C.③④ D.②③④第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、完成下面的证明:看图填空:已知如图,于,于,,求证:平分.证明:于,于G(_____),,(_____).(_____).(_____)._____(_____),_____(_____).又(已知),(_____),平分(_____).2、平移的概念:一个图形沿着某个方向移动一定的距离,图形的这种移动,叫做______.3、平行线的判定:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____相等,两直线平行符号语言: ∵ ∠1=∠2(已知)∴ a∥b( )(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:_____相等,两直线平行.符号语言:∵ ∠1=∠3(已知)∴ a∥b( )(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_____互补,两直线平行.符号语言:∵ ∠1+∠4= 180°(已知)∴ a∥b( )4、如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要______米.5、按要求完成下列证明:如图,点,,分别是三角形的边,,上的点,,.求证:.证明:, ., . .三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OD.(1)若∠AOC=60°,求∠EOF的度数.(2)画OE的反向延长线OG,OG是∠AOC的平分线吗?请说明理由.2、已知一角的两边与另一个角的两边分别平行,试探索这两个角之间的关系,并说明你的结论.(1)如图1所示,,,则与的关系是 ;(2)如图2所示,,,则与的关系是 ;(3)经过上述探索,我们可以得到一个结论(试用文字语言表述): ;(4)若两个角的两边分别平行,且一个角比另一个角的倍少,则这两个分别是多少度?3、如图,在中,平分交于D,平分交于F,已知,求证:.4、如图,在ABC中,DEAC,DFAB.(1)判断∠A与∠EDF之间的大小关系,并说明理由.(2)求∠A+∠B+∠C的度数.5、如图,直线AB、CD相交于点O,OE⊥CD.(1)若∠BOD∶∠BOC=1∶4,求∠AOE的度数;(2)在第一问的条件下,过点O作OF⊥AB,则∠EOF的度数为 . -参考答案-一、单选题1、D【解析】【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.【详解】∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.∵AB=3,∴AC=5,∴3≤AP≤5,故AP不可能是5.5,故选:D.【点睛】本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.2、B【解析】【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.【详解】A. ,,故该选项不符合题意;B. ,,故该选项符合题意;C. ,,故该选项不符合题意; D. ,,故该选项不符合题意;故选B【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.3、C【解析】【分析】根据平行线的性质可得,进而根据即可求解【详解】解:故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.4、B【解析】【分析】直接利用垂直的定义结合互余得出答案.【详解】解:∵点O在直线DB上, OC⊥OA, ∴∠AOC=90°,∵∠1=20°,∴∠BOC=90°−20°=70°,故选:B.【点睛】此题主要考查了垂线以及互余,正确把握相关定义是解题关键.5、B【解析】【分析】根据推出,求出的度数即可求出答案.【详解】,∴,,,.故选:.【点睛】此题考查了平行线的判定及性质,熟记平行线的判定定理:内错角相等两直线平行是解题的关键.6、C【解析】【分析】根据题意可得 的长度等于平移的距离,即可求解.【详解】∵△ABC沿BC方向平移到△DEF的位置,∴点 的对应点为 ,即 的长度等于平移的距离,∵BE=3cm,∴平移的距离为3cm.故选:C【点睛】本题主要考查了图形的平移,熟练掌握平移的距离都等于对应点间长度是解题的关键.7、B【解析】【分析】根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.【详解】解:∵AD∥BC,∴∠ABC=∠DAB=54°,∠EBC=∠E,∵BE平分∠ABC,∴∠EBC=∠ABC=27°,∴∠E=27°.故选:B.【点睛】本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.8、B【解析】【分析】根据线段公理可判断A,根据点C与线段AB的位置关系可判断B,根据平行公理可判断C,根据垂线公理可判断D即可.【详解】A. 两点之间线段最短,正确,故选项A不合题意;B. 若AC=BC,点C在线段AB外和线段AB上两种情况,当点C在线段AB上时,则点C是线段AB的中点,当点C不在线段AB上,则点C不是线段AB中点,不正确,故选项B符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,正确,故选项C不合题意;D. 平面内过直线外一点有且只有一条直线与已知直线垂直,正确,故选项D不合题意.故选B.【点睛】本题考查基本事实即公理,和线段的中点,掌握基本事实即公理,和线段的中点是解题关键.9、B【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,,∴,∴,故选B.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.10、B【解析】【分析】根据平行线的判定逐个判断即可.【详解】①∠1=∠2,②∠3=∠4,③ADBE, ∠D=∠B,④∠DCE=∠D,能推出ABDC的条件为②③故选B【点睛】本题考查了平行线的性质与判定定理,掌握平行线的判定定理是解题的关键.二、填空题1、已知;垂直定义;等量代换;同位角相等,两直线平行;3,两直线平行,内错角相等;,两直线平行,同位角相等;等量代换;角平分线的定义【解析】【分析】根据平行线的性质,平行线的判定等相关知识解答即可.【详解】证明:于,于(已知),,(垂直定义).(等量代换).(同位角相等,两直线平行).(两直线平行,内错角相等),(两直线平行,同位角相等).又(已知),(等量代换),平分(角平分线的定义).故答案为:已知;垂直定义;等量代换;同位角相等,两直线平行;3,两直线平行,内错角相等;,两直线平行,同位角相等;等量代换;角平分线的定义.【点睛】本题考查了平行线的性质和判定,垂直即两条直角相交所成的四个角中,有一个直角;角的平分线即从角的顶点出发的射线把角分成两个相等的角,熟练掌握平行线的性质和判定是解题的关键.2、平移【解析】略3、 同位角 同位角相等,两直线平行 内错角 内错角相等,两直线平行 同旁内角 同旁内角互补,两直线平行【解析】略4、15【解析】【分析】根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.【详解】解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要 12+3=15(米).故答案为:15.【点睛】本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.5、,两直线平行,内错角相等;,等量代换;同位角相等,两直线平行【解析】【分析】由题意知由两直线平行,内错角相等可得,由,可知.【详解】解:证明: 两直线平行,内错角相等)(已知)(等量代换)(同位角相等,两直线平行)故答案为:,两直线平行,内错角相等;,等量代换;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定.解题的关键在于用角的数量关系判断两直线的位置关系.三、解答题1、 (1)60°;(2)OG是∠AOC的平分线,理由见解析.【解析】【分析】(1)依据对顶角相等得到∠BOD=60°;根据OE平分∠BOD,即可得出∠DOE=∠BOD=30°,依据OF⊥CD,可得∠EOF=90°−30°=60°;(2)根据角平分线的定义得到∠BOE=∠DOE,根据对顶角的性质得到∠AOG=∠COG,于是得到结论.(1)解:∵直线AB、CD相交于点O,∴∠BOD=∠AOC=60°,∵OE平分∠BOD,∴∠DOE=∠BOD=30°,∵OF⊥CD,∴∠DOF=90°,∴∠EOF=∠DOF -∠DOE=90°−30°=60°;(2)解:如图,画出OE的反向延长线OG如图所示,OG平分∠AOC,理由:∵射线OE平分∠BOD,∴∠BOE=∠DOE,∵∠BOE=∠AOG,∠DOE=∠COG,∴∠AOG=∠COG,∴OG平分∠AOC.【点睛】本题考查了对顶角的性质,角平分线的定义,熟记对顶角的性质和角平分线的定义是解题的关键.2、(1);(2);(3)一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补;(4),【解析】【分析】(1)根据两直线平行,同位角相等,可求出∠1=∠2;(2)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠2=180°;(3)由(1)(2)可得出结论;(4)由(3)可列出方程,求出角的度数.【详解】解:(1)如图1.,.,..故答案为:.(2),.,..故答案为:.(3)由(1)、(2)得:一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补.(4)这两个角分别是、,且.,...这两个角分别为、. 图1 图2【点睛】本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.3、见解析【解析】【分析】根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.【详解】证明:(已知),(同位角相等,两直线平行),(两直线平行,同位角相等),平分,平分(已知),,(角平分线的定义),(等量代换).(同位角相等,两直线平行).【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.4、(1)两角相等,见解析;(2)180°【解析】【分析】(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;【详解】(1)两角相等,理由如下:∵DE∥AC,∴∠A=∠BED(两直线平行,同位角相等).∵DF∥AB,∴∠EDF=∠BED(两直线平行,内错角相等),∴∠A=∠EDF(等量代换).(2)∵DE∥AC,∴∠C=∠EDB(两直线平行,同位角相等).∵DF∥AB,∴∠B=∠FDC(两直线平行,同位角相等).∵∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°(等量代换).【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5、(1);(2)或.【解析】【分析】(1)先根据可求出,从而可得,再根据垂直的定义可得,然后根据即可得;(2)先根据(1)的结果求出的度数,再根据垂直的定义可得,然后分①在直线的上方,②在直线的下方两种情况,根据角的和差即可得.【详解】解:(1),,,,,;(2)由(1)已得:,,,,由题意,分以下两种情况:①如图,当在直线的上方时,则;②如图,当在直线的下方时,则;综上,的度数为或,故答案为:或.【点睛】本题考查了邻补角、垂直,较难的是题(2),正确分两种情况讨论是解题关键.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试练习题,共21页。试卷主要包含了如图,直线AB∥CD,直线AB,下列命题中,是真命题的是等内容,欢迎下载使用。
这是一份七年级下册第七章 相交线与平行线综合与测试同步练习题,共22页。试卷主要包含了直线等内容,欢迎下载使用。
这是一份2020-2021学年第七章 相交线与平行线综合与测试当堂达标检测题,共21页。试卷主要包含了下列说法正确的是,如图,直线AB∥CD,直线AB,下列命题中,是真命题的是等内容,欢迎下载使用。