![2022年最新精品解析冀教版七年级下册第六章二元一次方程组同步测试试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12716860/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级下册第六章二元一次方程组同步测试试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12716860/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级下册第六章二元一次方程组同步测试试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12716860/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第六章 二元一次方程组综合与测试达标测试
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试达标测试,共23页。试卷主要包含了二元一次方程组的解是等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、方程x+y=6的正整数解有( )A.5个 B.6个 C.7个 D.无数个2、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )A. B.C. D.3、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )A.1 B.﹣1 C.2 D.﹣34、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )A. B.C. D.5、二元一次方程组的解是( )A. B. C. D.6、《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为( )A. B.C. D.7、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )A.6或 B.2或6 C.2或 D.2或8、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺!设绳索长x尺,竿长y尺,则符合题意的方程组是( )A. B. C. D.9、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )A.60厘米 B.80厘米 C.100厘米 D.120厘米10、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有人,该物品价值元,则根据题意可列方程组为( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、凤鸣文具厂生产的一种文具套装深受学生喜爱,已知该文具套装一套包含有1个笔袋,2只笔,3个笔记本,某文具超市向该厂订购了一批文具套装,需要厂家在15天内生产完该套装并交货.凤鸣文具厂将员工分为A、B、C三个组,分别生产笔袋、笔、笔记本,他们于某天零点开始工作,每天24小时轮班连续工作(假设每小时工作效率相同),若干天后的零点A组完成任务,再过几天后(不少于一天)的中午12点B组完成任务,再过几天(不少于一天)后的早晨6时C组完成任务.已知A、B、C三个组每天完成的任务数分别是270个、360个、360个,则该文具超市至少一共订购了 _____套文具套装.2、通过“___________”或“___________”进行消元,把“三元”转化为“___________ ”,使解三元一次方程组转化为解___________,进而再转化为解___________.3、如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.公路运价为1. 5元/(t·km),铁路运价为1.2元/(t·km),这两次运输共支出公路运费15 000元,铁路运费97 200元.这批产品的销售款比原料费与运输费的和多多少元?解:设产品重x吨,原料重y吨.由题意可列方程组 解这个方程组,得___________因为毛利润-销售款-原料费-运输费所以这批产品的销售款比原料费与运输的和多___________元.4、若关于x,y的二元一次方程组无解,则______.5、已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=_____.三、解答题(5小题,每小题10分,共计50分)1、风味美饭店生意火爆,座无虚席,老板决定扩大规模重新装修.若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元.(1)甲、乙两施工队工作一天,风味美饭店老板应各付多少钱?(2)若装修完后,风味美饭店马上投入使用,每天可盈利300元,现有三种方案:甲队单独做:②乙队单独做;③甲、乙两队同时做,你认为哪一种施工方案更有利于饭店老板?请你说明理由.2、以“花开中国梦”为主题的第十届中国花卉博览会于2021年5月21日至7月2日在上海市崇明区东平国家森林公园举办,本届花博会的门票分为平日票、指定日票等种类,其中平日票每张120元,指定日票每张180元,小明计划用2100元购买平日票和指定日票共15张.(1)求小明计划购买平日票和指定日票各几张?(2)为了鼓励大家提前购买,主办方决定,凡是在5月21日前购票的,平日票和指定日票都可以享受低于原价的预售价.小明决定按照预售价提前购票,在购票时小明发现:如果不改变原计划购买的门票种类及相应的张数,总金额可以节约300元;如果不改变原计划购票的总金额,那么可以购买5张平日票和10张指定日票,求平日票和指定日票的预售价分别是多少元?3、解方程组:.4、如图,在大长方形ABCD中,放入8个小长方形,(1)每个小长方形的长和宽分别是多少厘米?(2)图中阴影部分面积为多少平方厘米?5、某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔20支,共用了1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共60支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔,需支领1322元.”王老师算了一下,说:“如果只买这两种笔,你的帐肯定算错了!”请判断王老师的说法是否正确,并说明理由;②陈老师突然想起,所做的预算中还包括一支签字笔.如果签字笔的单价为不大于10元的整数,请直接写出签字笔的单价 -参考答案-一、单选题1、A【解析】【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可【详解】解:方程的正整数解有,,,,共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.2、A【解析】【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x,宽为y,由题意得: 或,故选A.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.3、C【解析】【分析】先求出方程组的解,由方程组的解为正整数分析得出a值.【详解】解:解方程组,得, ∵方程组的解为正整数,∴a=0时,;a=2时,, ∴满足条件的所有整数a的和为0+2=2.故选:C.【点睛】此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.4、B【解析】【分析】设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可【详解】解:设馒头每个元,包子每个元,根据题意得故选B【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.5、C【解析】【分析】根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.【详解】解:,由①+②,得11x=33,解得:x=3,把x=3代入①,得9+2y=13,解得:y=2,所以方程组的解是,故选:C.【点睛】本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.6、B【解析】【分析】根据题意列二元一次方程组即可.【详解】解:设雀每只x两,燕每只y两则五只雀为5x,六只燕为6y共重16两,则有互换其中一只则五只雀变为四只雀一只燕,即4x+y六只燕变为五只燕一只雀,即5y+x且一样重即由此可得方程组.故选:B.【点睛】列二元一次方程组解应用题的一般步骤审:审题,明确各数量之间的关系;设:设未知数(一般求什么,就设什么);找:找出应用题中的相等关系;列:根据相等关系列出两个方程,组成方程组;解:解方程组,求出未知数的值;答:检验方程组的解是否符合题意,写出答案.7、A【解析】【分析】设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为x cm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,,解得,,即点Q的运动速度cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,,解得:,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度或6cm/s时能使两三角形全等.故选:A.【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.8、A【解析】【分析】根据题意可列出等量关系:绳长=竿长+5尺,竿长=绳长的一半+5尺,据此列方程即可.【详解】解:设绳索长x尺,竿长y尺,则故选:A.【点睛】本题考查由实际问题抽象出二元一次方程组,关键是正确理解题意,找出等量关系,由等量关系列方程.9、D【解析】【分析】设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;【详解】设小长方形的长为x,小长方形的宽为y,根据题意可得:,解得:,∴每个小长方形的周长是;故选D.【点睛】本题主要考查了二元一次方程组的应用,准确计算是解题的关键.10、A【解析】【分析】根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.【详解】解:设有x人,物品价值y元,由题意得:故选:A.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.二、填空题1、1350【解析】【分析】设A组工作x天,B组工作(x+m+)天,C组工作(x+m++n+)(x,m,n都是正整数且m≥1,n≥1),x+m++n+<15,根据该文具套装一套包含有1个笔袋,2只笔,3个笔记本,列方程组求方程组的整数解即可.【详解】解:设A组工作x天,B组工作(x+m+)天,C组工作(x+m++n+)(x,m,n都是正整数且m≥1,n≥1),x+m++n+<15根据题意由①得③由②得④④-5×③得∵m,n均为正整数,∴m为奇数,当m=1,n=2,x=5,x+m++n+=8<15;当m=3,n=5,x=7,x+m++n+=15>15不合题意;A组一共工作5天,270×5=1350个该文具超市至少一共订购了1350套文具套装.故答案为1350.【点睛】本题考查列三元一次方程组解应用题,方程的整数解,利用一套中的比例列方程组,得出是解题关键.2、 代入 加减 二元 二元一次方程组 一元一次方程【解析】略3、 14【解析】略4、−【解析】【分析】根据加减消元法消去y,得到x,因为方程组无解,所以令分母等于0,使这个解无意义,则原方程组无解.【详解】解:,①×2得:2mx+6y=18③,②×3得:3x−6y=3④,③+④得:(2m+3)x=21,∴x=,∵方程组无解,∴2m+3=0,∴m=−.故答案为:−.【点睛】本题考查了二元一次方程组的解,解题的关键是利用消元法求得x的值.5、##0.4【解析】【分析】根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.【详解】解:(2A﹣7B)x+(3A﹣8B)=8x+10,∴,解得:,则A+B=,故答案为:.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.三、解答题1、 (1)甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.(2)安排甲、乙两个装修施工队同时施工更有利于饭店【解析】【分析】(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,根据“若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元”,即可得出关于x,y的二元一次方程施工队,解之即可得出结论;(2)设甲施工队单独完成工程需要a天,乙施工队单独完成工程需要b天,根据题意列方程组求出两施工队单独完成工程的天数,根据总费用=每天需支付的费用×工作时间,可分别求出单独请甲施工队和单独请乙施工队施工所需费用,分单独请甲施工队施工、单独请乙施工队施工和请甲、乙两施工队合做施工三种情况考虑,分别求出三种情况下损失的钱数,比较后即可得出结论.(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,依题意,得:,解得:.答:甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.(2)设甲施工队单独完成工程需要a天,乙施工队单独完成工程需要b天,根据题意得, 解得, 经检验,∴是方程组的解,单独请甲施工队需要的费用为400×21=8400(元);单独请乙施工队需要的费用为250×28=7000(元).同做:(天)合做需要的费用为(元)甲乙合做比乙单独做早完工(28-12)=16(天)16天饭店收益:16×300=4800(元)7800-4800=3000(元),即相对于乙单独做甲乙合做只花3000元;甲单独做比乙单独做早完工:28-21=7(天)300×7=2100(元),8400-2100=6300(元),即相对于乙单独做甲乙合做只花6300元;∵3000<6300<7000,∴甲、乙合做花费最少.答:安排甲、乙两个装修施工队同时施工更有利于饭店【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程施工队;(2)利用总费用=每天需支付的费用×工作时间,分别求出单独请甲施工队和单独请乙施工队施工所需费用;(3)利用损失的总钱数=施工费用+因装修损失收入,分别求出三种施工方式损失的总钱数.2、 (1)小明计划购买平日票为10张,指定日票为5张(2)平日票的预售价为100元,指定日票的预售价为160元【解析】【分析】(1)设小明计划购买平日票为张,指定日票为张,由题意:平日票每张120元,指定日票每张180元,小明计划用2100元购买平日票和指定日票共15张.列出方程组,解方程组即可;(2)设平日票的预售价为元,指定日票的预售价为元,由题意:不改变原计划购买的门票种类及相应的张数,总金额可以节约300元;不改变原计划购票的总金额,那么可以购买5张平日票和10张指定日票,列出方程组,解方程组即可.(1)解:设小明计划购买平日票为张,指定日票为张,由题意得:,解得:,答:小明计划购买平日票为10张,指定日票为5张;(2)解:设平日票的预售价为元,指定日票的预售价为元,由题意得:,解得:,答:平日票的预售价为100元,指定日票的预售价为160元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,解题的关键是正确列出二元一次方程组.3、【解析】【分析】利用加减消元法求解即可.【详解】解:整理可得, ②×2,可得:4x﹣2y=72③,③+①,可得:7x=84,解得:x=12,把x=12代入②,可得:24﹣y=36,解得:y=﹣12,∴方程组的解为.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,将二元方程转化为一元方程是解题的关键.4、 (1)7厘米和2厘米(2)53平方厘米【解析】【分析】(1)设小长方形宽为x厘米,长为y厘米,由图象列二元一次方程组,代入消元法求解即可.(2)阴影面积为大长方形ABCD面积减去8个小长方形面积.(1)设小长方形宽为x厘米,长为y厘米,则有BC=4x+y=15,CD=2x+y,AB=9+x∵AB=CD∴2x+y =9+x即x+y=9故有二元一次方程组将y=9-x代入4x+y=15有4x+9-x =15解得x=2将x=2代入y=9-x解得y=7故小长方形的长和宽分别是7厘米和2厘米.(2)由(1)问可知大长方形长ABCD为15cm,宽为11cm,则长方形面积为15×11=165cm2小长方形的面积为2×7=14cm2由题干知长方形中有8个小长方形故即【点睛】本题考查了列二元一次方程组,列二元一次方程组解应用题的一般步骤,审:审题,明确各数量之间的关系,设:设未知数(一般求什么,就设什么),找:找出应用题中的相等关系,列:根据相等关系列出两个方程,组成方程组,解:解方程组,求出未知数的值,答:检验方程组的解是否符合题意,写出答案.5、 (1)钢笔的单价为19元,毛笔的单价为25元(2)①王老师的说法是正确的,理由见解析;②2元/支或8元/支【解析】【分析】(1)设钢笔的单价为x元,则毛笔的单价为元,根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;(2)①根据第一问的结论设钢笔为y支,所以毛笔则为支,求出方程的解不是整数则说明算错了;②设钢笔为y支,毛笔则为支,签字笔的单价为a元,根据条件建立方程求出其解就可以得出结论.(1)设钢笔的单价为x元,则毛笔的单价为元,由题意得:,解得:.,答:钢笔的单价为19元,毛笔的单价为25元;(2)①王老师的说法是正确的.理由:设钢笔为y支,所以毛笔则为支.根据题意,得,解得(不符合题意),∴陈老师肯定算错了;②设钢笔为y支,签字笔的单价为a元,则根据题意,得,∴,∵a、y都是整数,∴应被6整除,∴a为偶数,∵a为小于10元的整数,∴a可能为2、4、6、8,当时,,,符合题意;当时,,,不符合题意;当时,,,不符合题意;当时,,,符合题意,∴签字笔的单价可能2元或8元.【点睛】本题考查了列二元一次方程解实际问题的运用,列一元一次方程解实际问题的运用,在解答时根据题意等量关系建立方程是关键.
相关试卷
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试练习,共21页。试卷主要包含了已知,则,已知关于x,已知是二元一次方程,则的值为等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课时训练,共19页。试卷主要包含了已知关于x,已知方程组的解满足,则的值为等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课时训练,共19页。试卷主要包含了已知是二元一次方程,则的值为,二元一次方程的解可以是,若方程组的解为,则方程组的解为等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)