![2021-2022学年度北师大版七年级数学下册期末专项测试 卷(Ⅲ)(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12715552/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度北师大版七年级数学下册期末专项测试 卷(Ⅲ)(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12715552/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度北师大版七年级数学下册期末专项测试 卷(Ⅲ)(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12715552/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年度北师大版七年级数学下册期末专项测试 卷(Ⅲ)(含答案解析)
展开
这是一份2021-2022学年度北师大版七年级数学下册期末专项测试 卷(Ⅲ)(含答案解析),共19页。试卷主要包含了如图,有5张形状等内容,欢迎下载使用。
北师大版七年级数学下册期末专项测试 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在2×2正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中可以画出与△ABC成轴对称的格点三角形的个数为( )A.2个 B.3个 C.4个 D.5个2、下列各式中,计算结果为x10的是( )A.x5+x5 B.x2•x5 C.x20÷x2 D.(x5)23、如图,若MB=ND,∠MBA=∠NDC,下列条件中不能判定的是( )A.AM=CN B. C.AB=CD D.∠M=∠N4、一个三角形的两边长分别是3和5,则它的第三边可能为( )A.2 B.4 C.8 D.115、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( ).A. B. C. D.6、若,,则下列a,b,c的大小关系正确的( )A. B. C. D.7、骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是( )A.沙漠 B.体温 C.时间 D.骆驼8、将一副三角板按如图所示的方式放置,使两个直角重合,则∠AFD的度数是( )A.10° B.15° C.20° D.25°9、下列图形是四家电信公司的标志,其中是轴对称图形的是( )A. B.C. D.10、已知一个正方形的边长为,则该正方形的面积为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;2、我市出租车收费按里程计算,3千米以内(含3千米)收费10元,超过3千米,每增加1千米加收2元,则当x≥3时,车费y(元)与x(千米)之间的关系式为_____.3、如图,长方形沿折叠,使点落在边上的点处,如果,则_______度.4、若是关于的完全平方式,则__.5、如图,在△ABC中,∠ACB=90°,AC=8,BC=10,点P从点A出发沿线段AC以每秒1个单位长度的速度向终点C运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F,当△PEC与△QFC全等时,CQ的长为______.三、解答题(5小题,每小题10分,共计50分)1、目前我国已建成全球最大的5G网络,它给我们的生活带来了便利.据统计,某市居民使用甲、乙、丙三家运营商提供的5G网络已突破80万户.为了解用户使用的满意度,有关部门从中随机抽取100人次作为样本,整理后得到下表数据:满意度(得分)中青年用户其他用户甲运营商乙运营商丙运营商甲运营商乙运营商丙运营商满意(10分)151524667一般(5分)443223不满意(0分)212121(1)在样本中任取1个,求这个人恰好是中青年用户的概率;(2)如果小王要使用运营商提供的5G网络,以满意度的平均值作为决策依据,你会建议他选择哪一家运营商?2、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:BE=CD;(2)F为AD上一点,DF=CD,连接BF,若AD=5,BE=2,求△BDG的面积3、某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为 ;(2)估计这批柑橘完好的质量为 千克;(3)如果公司希望销售这些柑橘能够获得不低于25000元的利润,那么在出售(已去掉损坏的柑橘)时,每千克柑橘大约定价为多少元比较合适?4、 “十一”期间,小明和父母一起开车到距家200 km的景点旅游,出发前,汽车油箱内储油45 L,当行驶150 km时,发现油箱余油量为30 L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式;(2)当x=280 km时,求剩余油量Q的值.5、袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?为了验证你的想法,动手摸一下吧!每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀.汇总全班同学摸球的结果并把结果填在下表中.球的颜色黑球白球摸取次数 比较表中记录的数字的大小,结果与你事先的判断一致吗?在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件.一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生.由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.你们的试验结果也是这样吗? -参考答案-一、单选题1、D【分析】在网格中画出轴对称图形即可.【详解】解:如图所示,共有5个格点三角形与△ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形.2、D【分析】利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可.【详解】解:A、x5+x5=2x5,故A不符合题意;B、x2•x5=x7,故B不符合题意;C、x20÷x2=x18,故C不符合题意;D、(x5)2=x10,故D符合题意;故选D.【点睛】本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键.3、A【分析】根据两个三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【详解】解:A、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A选项符合题意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D选项不符合题意.故选:A.【点睛】本题重点考查了三角形全等的判定定理,两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.4、B【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边之差小于第三边,设第三边为,可得,再解即可.【详解】设第三边为,由题意得:,.故选:B.【点睛】此题主要考查了三角形的三边关系:掌握第三边大于已知的两边的差,而小于两边的和是解题的关键.5、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案.【详解】解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.6、C【分析】利用零次幂的含义求解的值,利用平方差公式求解的值,利用积的乘方的逆运算求解的值,再比较大小即可.【详解】解: 而 故选C【点睛】本题考查的是零次幂的含义,平方差公式的应用,积的乘方运算的逆运算,先计算的值再比较大小是解本题的关键.7、B【分析】根据自变量和因变量的概念,即可得到答案.【详解】∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温,故选B.【点睛】本题主要考查函数的因变量和自变量的概念,掌握因变量是随着自变量的变化而变化的,是解题的关键.8、B【分析】根据三角板各角度数和三角形的外角性质可求得∠BFE,再根据对顶角相等求解即可.【详解】解:由题意,∠ABC=60°,∠E=45°,∵∠ABC=∠E+∠BFE,∴∠BFE=∠ABC-∠E=60°-45°=15°,∴∠AFD=∠BFE=15°,故选:B.【点睛】本题考查三角板各角的度数、三角形的外角性质、对顶角相等,熟知三角板各角的度数,掌握三角形的外角性质是解答的关键.9、C【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.10、A【分析】先根据正方形的面积公式列式,然后再根据完全平方公式计算即可.【详解】解:该正方形的面积为(a+1)2=a2+2a+1.
故选:A.【点睛】本题主要考查列代数式、完全平方公式等知识点,灵活运用完全平方公式成为解答本题的关键.二、填空题1、V=100h【分析】根据体积公式:体积=底面积×高进行填空即可.【详解】解:V与h的关系为V=100h;故答案为:V=100h.【点睛】本题主要考查了列函数关系式,题目比较简单.2、y=2x+4【分析】根据题意列出给关系式即可.【详解】由题意可知当x≥3时,车费y(元)与x(千米)之间的关系式为y=10+2(x-3)=2x+4【点睛】此题主要考查函数关系式的表示,解题的关键是根据题意找到等量关系.3、20【分析】先由折叠的性质可知,故,推出,再由即可解答.【详解】如图所示,连接,是沿直线折叠而成,,,,,,.故答案为:20.【点睛】此题考查翻折变换(折叠问题),解题关键在于利用折叠的性质进行解答.4、±12【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】解:是一个完全平方式,,,故答案为:.【点睛】本题主要考查了完全平方式,完全平方式分两种,一种是完两数和的平方,就是两个整式的和括号外的平方.另一种是两数差的平方,就是两个整式的差括号外的平方.算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央.5、7或3.5【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;【详解】解:当P在AC上,Q在BC上时,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC与△QFC全等,∴此时是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,综上,当△PEC与△QFC全等时,满足条件的CQ的长为7或3.5,故答案为:7或3.5.【点睛】本题主要考查了全等三角形的性质,根据题意得出关于的方程是解题的关键.三、解答题1、(1)这个人恰好是中青年用户的概率为0.7;(2)选择丙运营商.【分析】(1)计算出抽查的100人中,中青年用户的人数即可;(2)计算出各个运营商的满意度的平均值,比较得出答案.【详解】(1)抽查的100人中,中青年用户有15+4+2+15+4+1+24+3+2=70(人),所以在样本中任取1个,恰好是中青年用户的概率为=0.7;(2)甲运营商的满意度平均值为:(分),乙运营商的满意度平均值为:(分),丙运营商的满意度平均值为:(分),因此建议选择丙运营商,答:选择丙运营商.【点睛】本题考查了概率、平均数,理解概率、算术平均数的意义,掌握概率和算术平均数的计算方法是正确解答的关键.2、(1)见解析;(2)【分析】(1)根据垂直定义求出∠BEC=∠ACB=∠ADC,根据等式性质求出∠ACD=∠CBE,根据AAS证明△BCE≌△CAD,则可得出结论;(2)证明△FDG≌△BEG(AAS),由全等三角形的性质得出EG=DG,求出DG的长,则可得出答案.【详解】解:(1)证明:∵∠ACB=90°,BE⊥CE,AD⊥CE∴∠ECB+∠ACD=90°,∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE;(2)证明:∵△ACD≌△CBE,∴AD=CE,CD=BE,∵DF=CD∴FD=BE∵AD⊥CE,BE⊥CE,∴BE∥AD,∴∠BEG=∠FDG,在△FDG和△BEG中,,∴△FDG≌△BEG(AAS),∴EG=DG,∵AD=5,BE=2,∴DG=DE=(CE-CD)=×(5-2)=,∴S△BDG=DG•BE=××2=.【点睛】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是证明△ADC和△CEB全等.3、(1)0.1;(2)9000;(3)每千克柑橘大约定价为5元比较合适.【分析】(1)根据图形即可得出柑橘损坏的概率; (2)用整体1减去柑橘损坏的概率即可出柑橘完好的概率,再乘以10000千克即可解题;(3)先设每千克柑橘大约定价为x元比较合适,根据题意列出方程,解方程即可解答.【详解】解:(1)由图可知,柑橘损坏概率估计值为0.1故答案为:0.1;(2)1-0.1=0.9,10000×0.9=9000(千克)故答案:9000;(3)设每千克柑橘大约定价为x元比较合适,由题意得,9000x=25000+2×10000解得:x=5答:每千克柑橘大约定价为5元比较合适.【点睛】本题考查频率估计概率,解题关键是在图中找到必要信息,求出柑橘损坏的概率.4、 (1)该车平均每千米的耗油量为0.1(L/km), Q=45-0.1x;(2)当x=280 km时,剩余油量Q的值为17 L.【分析】(1)根据平均每千米的耗油量=总耗油量÷行驶路程即可得出该车平均每千米的耗油量,再根据剩余油量=总油量-平均每千米的耗油量×行驶路程即可得出Q关于x的函数关系式;(2)将x=280代入Q关于x的函数关系式,求出Q值即可;【详解】(1)该车平均每千米的耗油量为(45-30)÷150=0.1(L/km),行驶路程x(km)与剩余油量Q(L)的关系式为Q=45-0.1x.(2)当x=280时,Q=45-0.1×280=17.故当x=280 km时,剩余油量Q的值为17L.【点睛】本题考查了列函数的关系式以及一次函数图象上点的坐标特征,根据数量关系列出函数关系式是解题的关键.5、(1)都有可能;(2)不一样大,黑球的可能性大;验证:30,15(答案不唯一);结果和事先判断一致,试验结果一致【分析】(1)根据随机事件的定义可知;(2)根据事件发生的可能性大小判断即可.【详解】(1)都有可能;(2)不一样大,黑球的可能性大.验证:答案不唯一,假设全班学生共45人,汇总全班同学摸球的结果并把结果填在下表中.球的颜色黑球白球摸取次数3015根据等可能性的概率,试验结果和事先判断一致;试验结果一致.故答案为:30,15(答案不唯一).【点睛】本题考查了事件的可能性,简单概率的求法,掌握比较事件的可能性是解题的关键.
相关试卷
这是一份2021-2022学年度北师大版七年级数学下册期末专项测试 B卷(精选),共19页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份2021-2022学年度北师大版七年级数学下册期末专项测试 B卷(含答案及详解),共16页。试卷主要包含了下列说法正确的是,若,,则代数式的值是,下列计算正确的是等内容,欢迎下载使用。
这是一份2021-2022学年度北师大版七年级数学下册期末专项测评 卷(Ⅰ)(含答案及解析),共19页。试卷主要包含了若∠α=55°,则∠α的余角是,下列计算正确的是,下列命题中,为真命题的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)