





所属成套资源:【全国中考通用】2022年中考数学分类专题突破(36份打包,原卷版+解析版)
- 专题26 四边形中的线段长度问题 试卷 2 次下载
- 专题27 四边形中的面积综合问题 试卷 2 次下载
- 专题29 一次函数应用综合 试卷 4 次下载
- 专题30 一次函数应用题 试卷 4 次下载
- 专题31 一次函数的图象与性质 试卷 2 次下载
专题28 四边形中的三角形全等问题
展开
这是一份专题28 四边形中的三角形全等问题,文件包含专题28四边形中的三角形全等问题解析版docx、专题28四边形中的三角形全等问题原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
专题28 四边形中的三角形全等问题 1、如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证DG=BE;(2)连接FC,求tan∠FCN的值;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=3,BC=8,E是线段BC上一动点(不含端点B,C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.当点E由B向C运动时,判断tan∠FCN的值是否为定值?若是,求出该定值;若不是,请说明理由.2、【操作发现】如图①,在正方形ABCD中,点N、M分别在边BC、CD上,连结AM、AN、MN.∠MAN=45°,将△AMD绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而得DM+BN=MN.【实践探究】(1)在图①条件下,若CN=3,CM=4,则正方形ABCD的边长是 .(2)如图②,点M、N分别在边CD、AB上,且BN=DM.点E、F分别在BM、DN上,∠EAF=45°,连接EF,猜想三条线段EF、BE、DF之间满足的数量关系,并说明理由.【拓展】(3)如图③,在矩形ABCD中,AB=3,AD=4,点M、N分别在边DC、BC上,连结AM,AN,已知∠MAN=45°,BN=1,求DM的长.3、如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交BC边于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,请探究:当∠BFD与∠A之间满足怎样的数量关系时,能使四边形BECD成为矩形?为什么? 4、已知在△ABC中,AB=AC,点D在BC上,以AD、AE为腰做等腰三角形ADE,且∠ADE=∠ABC,连接CE,过E作EM∥BC交CA延长线于M,连接BM.(1)求证:△BAD≌△CAE;(2)若∠ABC=30°,求∠MEC的度数;(3)求证:四边形MBDE是平行四边形. 5、如图,在四边形ABCD中,∠A=90°,AD∥BC,BC=BD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若AD=4,CE=3,求CD的长.6、已知:矩形ABCD中,点E、F为对角线AC上两点,AF=CE.(1)如图1,求证:BE∥DF;(2)如图2,当AB=BE=AD时,连接DE、BF,在不添加任何辅助线的情况下,请直接写出四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.7、如图,在平行四边形ABCD中,点G在CD上,点H在AB上,且DG=BH,点E.F在AC上,且AE=CF.连接GF,FH,HE,EG.(1)求证:△CFG≌△AEH;(2)若AG=GC,则四边形EHFG是什么特殊四边形?请说明理由. 8、如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD边上一点,过点B作BF∥EC,交AD的延长线于点F,连接BE,CF.(1)求证:△BDF≌△CDE.(2)若DE=BC,求证:四边形BECF是正方形.9、阅读材料:教育部基础教育司负责人解读“2020新中考”时强调要注重学生分析与解决问题的能力,要增强学生的创新精神和综合素质.王老师想尝试改变教学方法,将以往教会学生做题改为引导学生会学习.于是她在菱形的学习中,引导同学们解决菱形中的一个问题时,采用了以下过程(请解决王老师提出的问题):先出示问题(1):如图1,在等边三角形ABC中,D为BC上一点,E为AC上一点,如果BD=CE,连接AD、BE,AD、BE相交于点P,求∠APE的度数.学习,王老师请同学们说说自己的收获.小明说发现一个结论:在这个等边三角形ABC中,只要满足BD=CE,则∠APE的度数就是一个定值,不会发生改变.紧接着王老师出示了问题(2):如图2,在菱形ABCD中,∠A=60°,E为BC上一点,F为CD上一点,BE=CF,连接DE、BF,DE、BF相交于点P,如果DP=4,BP=3,求出菱形的边长.问题(3):通过以上的学习请写出你得到的启示(一条即可). 10、如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.11、已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合),以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系 .(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.13、已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD.①求∠BDE的度数;②若正方形ABCD的边长是,请求出△BCG的面积. 15、利用“同角的余角相等”可以帮助我们得到相等的角,这个规律在全等三角形的判定中有着广泛的运用.(1)如图①,B,C,D三点共线,AB⊥BD于点B,DE⊥BD于点D,AC⊥CE,且AC=CE.若AB+DE=6,求BD的长.(2)如图②,在平面直角坐标系中,△ABC为等腰直角三角形,直角顶点C的坐标为(1,0),点A的坐标为(﹣2,1).求直线AB与y轴的交点坐标.(3)如图③,∠ACB=90°,OC平分∠AOB,若点B坐标为(b,0),点A坐标为(0,a).则S四边形AOBC= .(只需写出结果,用含a,b的式子表示)16、如图1,将边长为2的正方形OABC如图放置在直角坐标系中.(1)如图2,若将正方形OABC绕点O顺时针旋转30°时,求点A的坐标;(2)如图3,若将正方形OABC绕点O顺时针旋转75°时,求点B的坐标.
相关试卷
这是一份2023年中考数学 章节专项练习28 全等三角形,共3页。试卷主要包含了如图,,,,求证等内容,欢迎下载使用。
这是一份专题03 全等三角形中的动态问题-八年级数学秘籍之三角形全等、轴对称及几何动态问题思维训练,文件包含专题03全等三角形中的动态问题解析版docx、专题03全等三角形中的动态问题原卷版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。
这是一份知识点28 全等三角形2018--1,共7页。试卷主要包含了5分等内容,欢迎下载使用。
