终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系综合测试试卷(精选)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系综合测试试卷(精选)第1页
    2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系综合测试试卷(精选)第2页
    2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系综合测试试卷(精选)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后练习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后练习题,共26页。试卷主要包含了已知点在一,在平面直角坐标系中,点,已知点A等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为(    )A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)2、如图,在坐标系中用手盖住一点,若点轴的距离为2,到轴的距离为6,则点的坐标是(    A. B. C. D.3、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是(    A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)4、已知点在一、三象限的角平分线上,则的值为(   )A. B. C. D.5、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1O2O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是(  )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)6、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是        A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)7、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点DAB的中点,将点D绕着点A旋转90°得到点D的坐标为(    A.(﹣2,1)或(2,﹣1) B.(﹣2,5)或(2,3)C.(2,5)或(﹣2,3) D.(2,5)或(﹣2,5)8、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为(    A.2 B.﹣2 C.3 D.﹣39、已知点Aa+9,2a+6)在y轴上,a的值为(  )A.﹣9 B.9 C.3 D.﹣310、若点Pm,1)在第二象限内,则点Q(1﹣m,﹣1)在(  )A.第四象限 B.第三象限 C.第二象限 D.第一象限第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.如图,点的坐标为(,4),点的坐标为(,1),点第一象限内的整点,不共线的三点构成轴对称图形,则点的坐标可以是______(写出一个即可),满足题意的点的个数为________.2、如图,在平面直角坐标系中,点P1的坐标为(),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4OP5,…,OPnn为正整数),则点P2020的坐标是________.3、在平面直角坐标系中,点Am,﹣4)与点B(﹣5,n)关于y轴对称,则点(mn)在第 _____象限.4、在平面直角坐标系中,点P坐标为(﹣2,3),则点P关于x轴对称的点的坐标为___;点P关于原点对称的点坐标为___.5、若点关于原点的对称点是,则______.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,△ABC的两个顶点ABx轴上,顶点Cy轴上,且∠ACB=90°.(1)图中与∠ABC相等的角是    (2)若AC=3,BC=4,AB=5,求点C的坐标.2、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(3,2).(1)将△ABC向下平移四个单位长度,画出平移后的△A1B1C1;(点ABC的对应点分别是点A1B1C1);(2)画出△A1B1C1关于y轴对称的△A2B2C2(点A1B1C1的对称点分别是点A2B2C2).3、如图,ABCDx轴,且ABCD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标.4、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),△ABC关于y轴的对称图形为△A1B1C1 (1)请画出△ABC关于y轴对称图形△A1B1C1,并写出三个顶点的坐标A1   ), B1   ),C1   (2)在y轴上取点D,使得△ABD为等腰三角形,这样的点D共有        5、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点AC的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△ABC′.(3)求△ABC的面积        6、在平面直角坐标系中,△ABC各顶点的坐标分别是A(2,5),B(1,2),C(4,1).(1)作△ABC关于y轴对称后的△ABC′,并写出A′,B′,C′的坐标;(2)在y轴上有一点P,当△PBB'和△ABC的面积相等时,求点P的坐标.7、如图,图中的小方格都 是边长为1的正方形,△ABC的顶点坐标为ABC三点.(1)写出顶点ABC三点的坐标;        (2)请在图中画出△ABC关于y轴对称的图形△ABC′;    (3)写出点B′和点C′的坐标.8、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点DEF与点ABC对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点PQM(点PQM与点DEF对应),画出三角形PQM,并直接写出点P的坐标.9、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).(1)画出△ABC关于原点O对称的△A1B1C1(2)求△A1B1C1的面积.10、如图,在平面直角坐标系中,直角的三个顶点分别是(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结后,求四边形的面积. -参考答案-一、单选题1、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.【详解】解:∵ A(-4,3) ,∴关于y轴对称点B的坐标为(4,3).故答案为:B.【点睛】本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.2、C【分析】首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标.【详解】解:∵P点在第四象限,P点横坐标大于0,纵坐标小于0,P点到x轴的距离为2,到y轴的距离为6,P点的坐标为(6,-2),故选C.【点睛】本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征.3、A【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.4、A【分析】根据平面直角坐标系一三象限角平分线上点的特征是横纵坐标相等列式计算即可;【详解】∵点在一、三象限的角平分线上,故选A.【点睛】本题主要考查了一三象限角平分线上点的特征,准确分析计算是解题的关键.5、C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.6、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.【详解】解:∵两个点关于原点对称时,它们的坐标符号相反,∴点关于原点对称的点的坐标是故选:A.【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.7、C【分析】分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.【详解】解:设点D绕着点A逆时针旋转90°得到点D1分别过点DD1轴的垂线,分别交轴于点CE,如图:根据旋转的性质得∠DAD1=90°,AD1=AD∴∠AED1=∠ACD=90°,∴∠D1+∠EAD1=90°,∠EAD1 +∠DAC=90°,∴∠D1=∠DAC∴△AD1E≌△DACCD=AEED1=ACA(0,4),B(2,0),点DAB的中点,∴点D的坐标为(1,2),CD=AE=1,ED1=AC=AO-OC=2,∴点D1的坐标为(2,5);设点D绕着点A顺时针旋转90°得到点D2同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),故选:C.【点睛】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1D2的位置是解题的关键.8、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.【详解】解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,a=3,故选:C.【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.9、A【分析】根据y轴上点的横坐标为0列式计算即可得解.【详解】解:∵点Aa+9,2a+6)在y轴上,a+9=0,解得:a=-9,故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.10、A【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点Pm,1)在第二象限内,m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、()(答案不唯一)    7    【分析】根据题意建立平面直角坐标系,进而根据题意找等腰三角形即可【详解】建立如下坐标系,如图,则点如图,根据题意不共线的三点构成轴对称图形,则是等腰三角形,根据等腰三角形的性质可得这样的点有7个,分别为:故答案为:(3,1);7【点睛】本题考查了等腰三角形的判定,轴对称的性质,将题目转化为找等腰三角形是解题的关键.2、(0,【分析】根据题意得出OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=8=23OP5=16=24…,OPn=2n-1,再利用旋转角度得出点P2020的坐标与点P4的坐标在同一直线上,进而得出答案.【详解】解:∵点P1的坐标为(),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=23OP5=24…,OPn=2n-1由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,).故答案为:(0,).【点睛】此题主要考查了点的变化规律,根据题意得出点P2020的坐标与点P4的坐标在同一直线上是解题关键.3、四【分析】先根据关于y轴对称的点的特征:纵坐标相同,横坐标互为相反数求出mn的值,再根据每个象限内点的坐标特点求解即可.【详解】解:∵点Am,﹣4)与点B(﹣5,n)关于y轴对称,m=5,n=-4,∴点(mn)即点(5,-4)在第四象限,故答案为:四.【点睛】本题主要考查了关于y轴对称的点的坐标特征,根据点的坐标判断点所在的象限,熟练掌握关于y轴对称的点的坐标特征是解题的关键.4、(﹣2,-3)    (2,-3)    【分析】根据关于x轴对称点的坐标以及关于原点对称点的性质得出答案.【详解】解:点P坐标为(﹣2,3),则点P关于x轴对称的点的坐标为(﹣2,-3);P关于原点对称的点坐标为(2,-3).故答案为:(﹣2,-3);(2,-3).【点睛】本题主要考查了关于x轴对称点的坐标以及关于原点对称点的坐标,关键是掌握坐标的变化特点.关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于原点对称点的坐标特点:横坐标互为相反数、纵坐标互为相反数.5、【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:由关于坐标原点的对称点为,得,解得:故答案为:【点睛】本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.三、解答题1、(1)∠ACO;(2)点C的坐标为(0,).【分析】(1)由同角的余角相等,可得到∠ABC=ACO(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)∵OCAB,∠ACB=90°.∴∠ABC+BCO=ACO+BCO=90°,∴∠ABC=ACO故答案为:∠ACO(2)∵AC=3,BC=4,AB=5,∴三角形ABC是直角三角形,∠ACB=90°ABCO=ACBC,即CO==∴点C的坐标为(0,).【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.2、(1)图见解析;(2)图见解析.【分析】(1)先根据平移分别画出点,再顺次连接即可得;(2)先根据轴对称的性质画出点,再顺次连接即可得.【详解】解:(1)如图,即为所求;(2)如图,即为所求.【点睛】本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键.3、B(2,1),D(﹣2,﹣1).【分析】根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据ABCD=3得出横坐标.【详解】解:∵ABCDx轴,A点坐标为(﹣1,1),点C(1,﹣1),∴点BD的纵坐标分别是1,﹣1,ABCD=3,∴点BD的横坐标分别是-1+3=2,1-3=-2,B(2,1),D(﹣2,﹣1).【点睛】本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同.4、(1)见解析;-1,4 ;-3,1;-3,5;(2)5【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)分AB为腰和AB为底分别求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.A1(-1,4) ;B1(-3,1);C1(-3,5);故答案为:-1,4 ;-3,1;-3,5;(2)以点A为顶点、AB为腰的等腰三角形ABD,且点Dy轴上的有2个;以点B为顶点,BA为腰的等腰△ABD,且点Dy轴上的有2个;AB为底边的等腰三角形,且点Dy轴上的点只有1个;所以这样的点D共有5个,故答案为:5.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.5、(1)见解析;(2)见解析;(3)4.【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△ABC′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.6、(1)见解析;A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)P的坐标为(0,7)或(0,﹣3)【分析】(1)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;(2)根据三角形的面积公式,进而可得出P点坐标.【详解】解:(1)如图所示:A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)△ABC的面积=BB'=2,P的坐标为(0,7)或(0,﹣3).【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.7、(1)A( 0, -2 ),B( 3 , -1 ),C( 2, 1 );(2)图见解析;(3)(-3,-1 ),(-2,1 )【分析】(1)根据三角形在坐标中的位置可得;(2)分别作出点ABC关于y轴的对称点,再顺次连接可得;(3)利用点的坐标的表示方法求解.【详解】解:(1)△ABC的各顶点坐标:A(0,-2)、B(3,-1)、C(2,1);(2)△ABC′如图所示:(3)(-3,-1 ),(-2,1 ).【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.8、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【分析】(1)根据平移的特点先找出DEF所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点PQM,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,△PQM即为所求;PD(-3,0)横坐标减2,纵坐标加3得到的,∴点P的坐标为(-5,3).【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.9、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求△A1B1C1面积.【详解】(1)∵∴△ABC关于原点O对称的△A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.10、(1)图见解析,;(2)9【分析】利用网格特点和旋转的性质画出的对应点,从而得到利用两个梯形的面积和减去一个三角形的面积计算四边形的面积.【详解】解:如图,为所作,各个顶点坐标为如图,四边形的面积【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键. 

    相关试卷

    数学七年级下册第十五章 平面直角坐标系综合与测试课后作业题:

    这是一份数学七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共32页。试卷主要包含了在平面直角坐标系中,点,在平面直角坐标系中,点A,如图,A,点P关于原点O的对称点的坐标是,点在等内容,欢迎下载使用。

    数学七年级下册第十五章 平面直角坐标系综合与测试当堂检测题:

    这是一份数学七年级下册第十五章 平面直角坐标系综合与测试当堂检测题,共28页。试卷主要包含了已知A,点关于轴对称的点的坐标是等内容,欢迎下载使用。

    初中数学第十五章 平面直角坐标系综合与测试课后复习题:

    这是一份初中数学第十五章 平面直角坐标系综合与测试课后复习题,共29页。试卷主要包含了已知点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map