![2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12711670/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12711670/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪教版七年级数学第二学期第十五章平面直角坐标系难点解析试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12711670/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中第十五章 平面直角坐标系综合与测试测试题
展开
这是一份初中第十五章 平面直角坐标系综合与测试测试题,共29页。试卷主要包含了已知点A象限,点关于轴对称的点的坐标是,点在第四象限,则点在第几象限等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )
A.5 B.1 C. D.
2、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为( )
A.(2,﹣5) B.(﹣2,﹣5) C.(﹣2,5) D.(﹣5,2)
3、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为( )
A.(0,1) B.(2,0) C.(2,﹣1) D.(2,3)
4、已知点A(n,3)在y轴上,则点B(n-1,n+1)在第()象限
A.四 B.三 C.二 D.一
5、点关于轴对称的点的坐标是( )
A. B. C. D.
6、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )
A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)
7、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是( )
A.(-1,6) B.(-1,2) C.(-1,1) D.(4,1)
8、若点在第一象限,则a的取值范围是( )
A. B. C. D.无解
9、点在第四象限,则点在第几象限( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、点P(﹣1,2)关于y轴对称点的坐标是( ).
A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点在直角坐标系的轴上,等于 ____.
2、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.
3、正方形ABCD在坐标系中的位置如图所示.A(0,3),B(2,4),C(3,2),D(1,10).将正方形ABCD绕D点旋转90°后,点B到达的位置坐标为_____.
4、在平面直角坐标系中,点P(2,3)向右平移3个单位再向下平移2个单位后的坐标是___.
5、已知点A的坐标为,O为坐标原点,连结OA,将线段OA绕点О顺时针旋转90°得到线段,则点的坐标为______.
三、解答题(10小题,每小题5分,共计50分)
1、如图,△ABC顶点的坐标分别为A(1,﹣1),B(4,﹣1),C(3,﹣4).将△ABC绕点A逆时针旋转90°后,得到△AB1C1.在所给的直角坐标系中画出旋转后的△AB1C1,并直接写出点B1、C1的坐标:B1( , );C1( , ).
2、已知A(-1,3),B(4,2),C(2,-1).
(1)在平面直角坐标系中,画出△ABC及△ABC关于y轴的对称图形△A1B1C1;
(2)P为x轴上一点,请在图中标出使△PAB的周长最小时的点P,并根据图象直接写出此时点P的坐标 .
3、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,5),B(1,1),C(3,2)
(1)画出△ABC关于轴对称的△A1B1C1的图形及各顶点的坐标;
(2)画出△ABC关于轴对称的△A2B2C2的图形及各顶点的坐标;
(3)求出△ABC的面积.
4、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).
(1)直接写出点B关于原点对称的点B′的坐标: ;
(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
5、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).
(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1;
(2)画出△ABC关于原点O的对称图形△A2B2C2;
(3)直接写出下列点的坐标:A1 ,B2 .
6、如图在平面直角坐标系中,△ABC各顶点的坐标分别为: A(4,0),B(﹣1,4),C(﹣3,1)
(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;
(2)求△ABC的面积
7、如图,在平面直角坐标系中,AO=CO=6,AC交y轴于点B,∠BAO=30°,CO的垂直平分线过点B交x轴于点E.
(1)求AE的长;
(2)动点N从E出发,以1个单位/秒的速度沿射线EC方向运动,过N作x轴的平行线交直线OC于G,交直线BE于P,设GP的长为d,运动时间为t秒,请用含量t的式子表示d,并直接写出t的取值范围;
(3)在(2)的条件下,动点M从A以1个单位/秒的速度沿射线AE运动,且点M与点N同时出发,MN与射线OC相交于点K,是否存在某一运动时间t,使得=2,若存在,请求出t值;若不存在,请说明理由.
8、如图,在平面直角坐标系中,已知△ABC.
(1)将△ABC向下平移6个单位,得,画出;
(2)画出△ABC关于y轴的对称图形;
(3)连接,并直接写出△A1A2C2的面积.
9、在平面直角坐标系中,的顶点坐标分别为.
(1)关于y轴的对称图形为画出,(点A与点对应,点B与点对应,点C与点对应);
(2)连接,在的下方画出以为底的等腰直角,并直接写出点P的坐标.
10、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).
(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;
(2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;
(3)连接CE,CF,请直接写出△CEF的面积.
-参考答案-
一、单选题
1、D
【分析】
点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可.
【详解】
∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,
∴a=-3,b=-2,
∴-5,
故选D.
【点睛】
本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.
2、C
【分析】
关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.
【详解】
解:点P(2,5)关于y轴对称的点的坐标为:
故选:C
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.
3、D
【分析】
根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.
【详解】
解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,
∴点C的纵坐标是3,
根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,
∵B(2,1),
∴点C的横坐标是2,
∴点C坐标为(2,3),
故选:D.
【点睛】
本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.
4、C
【分析】
直接利用y轴上点的坐标特点得出n的值,进而得出答案.
【详解】
解:∵点A(n,3)在y轴上,
∴n=0,
则点B(n-1,n+1)为:(-1,1),在第二象限.
故选:C.
【点睛】
本题主要考查了点的坐标,正确得出n的值是解题关键.
5、B
【分析】
根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案.
【详解】
解:∵点A的坐标为(-2,-3),
∴点A(-2,-3)关于x轴对称的点的坐标是(-2,3).
故选:B.
【点睛】
本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键.
6、A
【分析】
关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.
【详解】
解:点(2,3)关于x轴对称的是
故选A
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.
7、A
【分析】
直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
∵,,
∴得到的点的坐标是.
故选:A.
【点睛】
本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.
8、B
【分析】
由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
【详解】
解: 点在第一象限,
由①得:
由②得:
故选B
【点睛】
本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
9、C
【分析】
根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.
【详解】
∵点A(x,y)在第四象限,
∴x>0,y<0,
∴﹣x<0,y﹣2<0,
故点B(﹣x,y﹣2)在第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
10、A
【分析】
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.
【详解】
解:∵点P(-1,2)关于y轴对称,
∴点P(-1,2)关于y轴对称的点的坐标是(1,2).
故选:A.
【点睛】
本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.
二、填空题
1、-1
【分析】
让纵坐标为0得到m的值,计算可得点P的坐标.
【详解】
解:∵点P(3,m+1)在直角坐标系x轴上,
∴m+1=0,
解得m=-1,
故选:-1.
【点睛】
考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为0.
2、或
【分析】
根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.
【详解】
解:∵点,,且ABx轴,
∴y=2,
∵点到轴的距离是到轴距离的2倍,
∴,
∴,
∴B(-4,2)或(4,2).
故答案为(-4,2)或(4,2).
【点睛】
本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.
3、 (4,0)或(﹣2,2)
【分析】
利用网格结构找出点B绕点D旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.
【详解】
解:如图,点B绕点D旋转90°到达点B′或B″,
点B′的坐标为(4,0),B″(﹣2,2).
故答案为:(4,0)或(﹣2,2).
【点睛】
本题主要考查了坐标与图形变化—旋转,解题的关键在于能够利用数形结合的思想进行求解.
4、 (5,1)
【分析】
利用坐标点平移的性质:左右平移,对横坐标进行加减,上下平移对纵坐标进行加减,解决该题即可.
【详解】
解:点P(2,3)向右平移3个单位再向下平移2个单位,即横坐标加3,纵坐标减2,
所以平移后的点坐标为(5,1).
故答案为:(5,1).
【点睛】
本题主要是考查了点坐标的平移,熟练掌握点坐标的上下左右平移与横纵坐标的关系,是求解该类问题的关键.
5、(b,-a)
【分析】
设A在第一象限,画出图分析,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.根据旋转的性质,A1B1=AB,OB1=OB.综合A1所在象限确定其坐标,其它象限解法完全相同.
【详解】
解:设A在第一象限,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.
∵A(a,b),
∴OB=a,AB=b,
∴A1B1=AB=b,OB1=OB=a,
因为A1在第四象限,所以A1(b,﹣a),
A在其它象限结论也成立.
故答案为:(b,﹣a),
【点睛】
本题考查了图形的旋转,设点A在某一象限是解题的关键.
三、解答题
1、画图见解析;B1(1,2);C1(4,1).
【分析】
图形绕点A逆时针旋转90°,将AB,AC逆时针旋转90°,得到,连接, 利用网格特点和旋转的性质得出点B1、C1的坐标,从而得到△AB1C1.
【详解】
如图所示,△AB1C1为所作,B1点的坐标为(1,2),C1点的坐标为(4,1).
故答案为(1,2),(4,1).
【点睛】
本题考察了绕某点画旋转图形以及求点坐标,首先找到旋转的点,根据旋转角度和网格特征,即可得到对应坐标点.
2、(1)见解析;(2)见解析,
【分析】
(1)根据关于y轴对称点的坐标特点得到△A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;
(2)作点A关于x轴的对称点A1,连接A1B交x轴与点P.
【详解】
解:(1)如图△ABC及△A1B1C1即为所求作的图形;
(2)如图点P即为所求作的点,此时点P的坐标(2,0) .
【点睛】
本题主要考查的是轴对称变换,掌握关于轴对称点的坐标特点是解题的关键.
3、(1)图见解析, A1(2,-5)B1(1,-1),C1(3,-2) ; (2)图见解析,A2(-2,5),B2(-1,1),C2(-3,2);(3)3.5
【分析】
(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得,然后写出坐标;
(2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得,然后写出坐标;
(3)利用割补法求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求,
A1(2,-5),B1(1,-1),C1(3,-2) ;
(2)如图所示,△A2B2C2即为所求,
A2(-2,5),B2(-1,1),C2(-3,2);
(3)△ABC的面积==3.5.
【点睛】
本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.
4、(1)(4,﹣1);(2)见解析;(3)见解析.
【分析】
(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
【详解】
(1)点B关于原点对称的点B′的坐标为(4,﹣1),
故答案为:(4,﹣1);
(2)如图所示,△A1B1C1即为所求.
(3)如图所示,△A2B2C2即为所求.
【点睛】
本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
5、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)
【分析】
(1)先根据网格找到A、B、C的对应点A1、B1、C1,然后顺次连接A1、B1、C1即可;
(2)先根据网格找到A、B、C的对应点A2、B2、C2,然后顺次连接A2、B2、C2即可;
(3)根据(1)(2)说画图形求解即可.
【详解】
解:(1)如图所示,即为所求;
(2)如图所示,即为所求;
(3)由图可知,的坐标为(-3,-2),的坐标为(3,-1),
故答案为:(-3,-2);(3,-1).
【点睛】
本题主要考查了坐标与图形变化—旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.
6、(1)见解析;(2)11.5
【分析】
(1)直接利用关于x轴对称点的性质,进而得出答案;
(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.
【详解】
解:(1)如图所示
(2)
【点睛】
此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.
7、(1)12;(2);(3)当或时,使得.
【分析】
(1)由OA=OC=6,∠BAO=30°,得到∠OAC=∠OCA=30°,则∠COE=∠OAC+∠OCA=60°,再由BE是线段OC的垂直平分线平分线,得到OE=CE,则△COE是等边三角形,由此即可得到答案;
(2)分三种情况:当直线PN在H点下方时(包括H点),当直线PN在H点上方,且在C点下方时(包括C点),当直线PN在C点上方时,三种情况讨论求解即可;
(3)分N在EC上和EC的延长线上两种情况,构造全等三角形求解即可.
【详解】
解:(1)∵OA=OC=6,∠BAO=30°,
∴∠OAC=∠OCA=30°,
∴∠COE=∠OAC+∠OCA=60°,
∵BE是线段OC的垂直平分线平分线,
∴OE=CE,
∴△COE是等边三角形,
∴OE=OC=AO=6,
∴AE=AO+OE=12;
(2)如图1所示,过点C作CK⊥x轴于K,设OC与BE的交点为H,当直线PN在H点下方时(包括H点),
∵BE是线段OC的垂直平分线,
∴∠CEP=∠OEP,
∵PN∥OE,
∴∠NPE=∠OEP,∠CGN=∠COE=60°,∠CNG=∠CEO=60°,
∴∠NPE=∠NEP,△CGN是等边三角形,
∴NP=NE=t,NG=CN=CE-NE=6-t,
∴PG=d=NG-NP=6-t-t=6-2t,
∵当直线PN刚好经过H点时,此时CH=CN=3,
即当t=3时,直线PN经过H点,
∴当直线PN在H点下方或经过H点时,d=6-2t(0≤t≤3);
如图2所示,当直线PN在H点上方,且在C点下方时(包括C点),
同理可证NP=NE=t,NG=CN=CE-CN=6-t,
∴PG=d=NP-NG=t-(6-t)=2t-6(3<t≤6);
如图3所示,当直线PN在C点上方时
同理可证NP=NE=t,NG=CN=EN-CE=t-6,
∴PG=d=NP+NG=t+t-6=2t-6(t>6),
∴综上所述, ;
(3)如图3-1所示,当N在CE上时,过点N作NR∥x轴交OC于R,
同(2)可证△CRN是等边三角形,
∴RN=CN=CR,
∵M、N运动的速度相同,
∴AM=NE,
又∵AO=EC,
∴MO=NR,
∵NR∥MO,
∴∠RNK=∠OMK,∠NRK=∠MOK,
∴△MOK≌△NRK(ASA),
∴OK=RK,OM=RN,
∵,
∴,
∵,
∴,即,
解得;
如图3-2所示,当C在EC的延长线上时,
同理可证,,
∵,
解得,
∴综上所述,当或时,使得.
【点睛】
本题主要考查了等边三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,坐标与图形,三角形外角的性质,全等三角形的性质与判定,解题的关键在于能够利用数形结合的思想进行求解.
8、(1)见解析;(2)见解析;(3)见解析,7
【分析】
(1)依据平移的方向和距离,即可得到;
(2)依据轴对称的性质,即可得到;
(3)依据割补法进行计算,即可得到△A1A2C2的面积.
【详解】
(1)如图所示,即为所求;
(2)如图所示,即为所求;
(3)如图所示,△A1A2C2即为所求作的三角形,
△A1A2C2的面积=3×6-×2×3-×2×6-×1×4
=18-3-6-2
=7.
【点睛】
本题考查作图−平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
9、(1)作图见解析;(2)作图见解析,
【分析】
(1)分别求出A,B,C关于y轴对称的点,连接即可;
(2)根据轴对称的性质计算即可;
【详解】
(1)由题可知,A,B,C关于y轴对称的点为,,,作图如下;
(2)根据题意可得:,设与y轴交于点M,则是等腰直角三角形,
∴,
∴;
【点睛】
本题主要考查了轴对称的性质应用和等腰直角三角形的性质,准确作图计算是解题的关键.
10、(1)作图见详解;(2)作图见详解;(3)的面积为2.
【分析】
(1)直接在坐标系中描点,然后依次连线即可;
(2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;
(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.
【详解】
解:(1)如图所示,即为所求;
(2)A、B、C三点关于x轴对称的点的坐标分别为:,,,
然后描点、连线,
∴即为所求;
(3)由图可得:SΔCEF=12×2×2=2,
∴的面积为2.
【点睛】
题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.
相关试卷
这是一份初中数学第十五章 平面直角坐标系综合与测试课后复习题,共29页。试卷主要包含了已知点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后练习题,共26页。试卷主要包含了已知点在一,在平面直角坐标系中,点,已知点A等内容,欢迎下载使用。
这是一份数学七年级下册第十五章 平面直角坐标系综合与测试练习,共29页。