搜索
    上传资料 赚现金
    2021-2022学年度沪教版七年级数学第二学期第十四章三角形专题测试练习题(无超纲)
    立即下载
    加入资料篮
    2021-2022学年度沪教版七年级数学第二学期第十四章三角形专题测试练习题(无超纲)01
    2021-2022学年度沪教版七年级数学第二学期第十四章三角形专题测试练习题(无超纲)02
    2021-2022学年度沪教版七年级数学第二学期第十四章三角形专题测试练习题(无超纲)03
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共36页。

    沪教版七年级数学第二学期第十四章三角形专题测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列各条件中,不能作出唯一的的是( )
    A.,, B.,,
    C.,, D.,,
    2、一个三角形三个内角的度数分别是x,y,z.若,则这个三角形是( )
    A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.不存在
    3、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).
    A.65° B.65°或80° C.50°或80° D.50°或65°
    4、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
    A.SSS B.SAS C.ASA D.AAS
    5、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC=5,则五边形DECHF的周长为(  )

    A.8 B.10 C.11 D.12
    6、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )

    A. B.
    C. D.
    7、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
    A.10 B.8 C.7 D.4
    8、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为(  )

    A.15° B.20° C.25° D.30°
    9、如图,≌,和是对应角,和是对应边,则下列结论中一定成立的是( )

    A. B.
    C. D.
    10、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是(  )

    A.3 B.4 C.5 D.6
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_________.

    2、在中,若,则_______.
    3、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.

    4、如图,在三角形ABC中,,点D为射线CB上一点,过点D作交直线AB于点E,交直线AC于点F,CG平分交DF于点G.若,则______°.

    5、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.

    2、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.

    3、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,,P为上一点,当_______时,与是偏等积三角形;

    (2)如图2,四边形是一片绿色花园,、是等腰直角三角形,.
    ①与是偏等积三角形吗?请说明理由;
    ②已知的面积为.如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G.若小路每米造价600元,请计算修建小路的总造价.
    4、如图,四边形中,,,于点.

    (1)如图1,求证:;
    (2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
    (3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
    5、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.
    (1)如图1,求证:AB∥CD;
    (2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;
    (3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠EDC=∠CDB,求∠GMH的度数.

    6、如图,在中,是角平分线,,.

    (1)求的度数;
    (2)若,求的度数.
    7、已知:如图,∠ABC=∠DCB,∠1=∠2.求证AB=DC.

    8、如图,CE⊥AB于点E,BF⊥AC于点F,BD=CD.
    (1)求证:△BDE≌△CDF;
    (2)求证:AE=AF.

    9、如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.

    10、如图所示,四边形的对角线、相交于点,已知,.求证:

    (1);
    (2).

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据三角形全等的判定及三角形三边关系即可得出结果.
    【详解】
    解:A、,不能组成三角形;
    B、根据不可以确定选项中条件能作出唯一三角形;
    C、根据可以确定选项中条件能作出唯一三角形;
    D、根据可以确定选项中条件能作出唯一三角形;
    故答案为:B.
    【点睛】
    本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
    2、C
    【分析】
    根据绝对值及平方的非负性可得,,再由三角形内角和定理将两个式子代入求解可得,,即可确定三角形的形状.
    【详解】
    解:,
    ∴且,
    ∴,,
    ∴,
    ∵,
    ∴,
    解得:,,
    ∴三角形为等腰直角三角形,
    故选:C.
    【点睛】
    题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.
    3、D
    【分析】
    可以是底角,也可以是顶角,分情况讨论即可.
    【详解】
    当角为底角时,底角就是,
    当角为等腰三角形的顶角时,底角为,
    因此这个等腰三角形的底角为或.
    故选:D.
    【点睛】
    本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
    4、A
    【分析】
    根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
    【详解】
    解:三根木条即为三角形的三边长,
    即为利用确定三角形,
    故选:A.
    【点睛】
    题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
    5、B
    【分析】
    证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.
    【详解】
    解:∵△GFH为等边三角形,
    ∴FH=GH,∠FHG=60°,
    ∴∠AHF+∠GHC=120°,
    ∵△ABC为等边三角形,
    ∴AB=BC=AC=5,∠ACB=∠A=60°,
    ∵∠AHF=180°-∠FHG-∠GHC =120°-∠GHC,
    ∠HGC=180°-∠C-∠GHC =120°-∠GHC,
    ∴∠AHF=∠HGC,
    在△AFH和△CHG中

    ∴△AFH≌△CHG(AAS),
    ∴AF=CH.
    ∵△BDE和△FGH是两个全等的等边三角形,
    ∴BE=FH,
    ∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
    =(BD+DF+AF)+(CE+BE),
    =AB+BC=10.
    故选:B.
    【点睛】
    本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.
    6、B
    【分析】
    根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.
    【详解】
    解:由三角形内角和知∠BAC=180°-∠2-∠1,
    ∵AE为∠BAC的平分线,
    ∴∠BAE=∠BAC=(180°-∠2-∠1).
    ∵AD为BC边上的高,
    ∴∠ADC=90°=∠DAB+∠ABD.
    又∵∠ABD=180°-∠2,
    ∴∠DAB=90°-(180°-∠2)=∠2-90°,
    ∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).
    故选:B
    【点睛】
    本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.
    7、C
    【分析】
    根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
    【详解】
    解:条线段的长分别是4,4,m,若它们能构成三角形,则
    ,即
    又为整数,则整数m的最大值是7
    故选C
    【点睛】
    本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
    8、A
    【分析】
    先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
    【详解】
    解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
    ∴∠EFD=60°,∠ABC=45°,
    ∵BC∥AD,
    ∴∠EFD=∠FBC=60°,
    ∴∠ABF=∠FBC-∠ABC=15°,
    故选A.

    【点睛】
    本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
    9、D
    【分析】
    根据全等三角形的性质求解即可.
    【详解】
    解:∵≌,和是对应角,和是对应边,
    ∴,,
    ∴,
    ∴选项A、B、C错误,D正确,
    故选:D.
    【点睛】
    本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.
    10、A
    【分析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
    【详解】
    解:如图:分情况讨论:

    ①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
    故共有3个点,
    故选:A.
    【点睛】
    本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
    二、填空题
    1、6cm或12cm
    【分析】
    先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.
    【详解】
    解:∵AX是AC的垂线,
    ∴∠BCA=∠PAQ=90°,
    ∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,
    当△ACB≌△QAP,
    ∴;
    当△ACB≌△PAQ,
    ∴,
    故答案为:6cm或12cm.

    【点睛】
    本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.
    2、65°65度
    【分析】
    由三角形的内角和定理,得到,即可得到答案;
    【详解】
    解:在中,,
    ∵,
    ∴,
    ∴;
    故答案为:65°.
    【点睛】
    本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.
    3、59°
    【分析】
    先利用三角形内角和定理求出∠CAB+∠CBA=180°-∠C=118°,从而利用三角形外角的性质求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分线的定义求出,由此求解即可.
    【详解】
    解:∵∠C=62°,
    ∴∠CAB+∠CBA=180°-∠C=118°,
    ∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,
    ∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,
    ∵△ABC两个外角的角平分线相交于G,
    ∴,,
    ∴,
    ∴∠G=180°-∠GAB-∠GBA=59°,
    故答案为:59°.

    【点睛】
    本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.
    4、80
    【分析】
    先求解 再求解 再利用三角形的外角的性质可得答案.
    【详解】
    解: ,,






    CG平分,


    故答案为:
    【点睛】
    本题考查的是角平分线的定义,平行线的性质,三角形的内角和定理,三角形的外角的性质,熟练的运用平行线的性质探究角之间的关系是解本题的关键.
    5、30°
    【分析】
    根据三角形的外角的性质,即可求解.
    【详解】
    解:∵ ,
    ∴ ,
    ∵∠ACD=75°,∠A=45°,
    ∴ .
    故答案为:30°
    【点睛】
    本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
    三、解答题
    1、见解析
    【分析】
    根据平行线的性质得出∠B=∠E,进而利用SAS证明,利用全等三角形的性质解答即可.
    【详解】
    证明:,

    即.


    在和中,



    【点睛】
    本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证是解题的关键.
    2、
    【分析】
    由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
    【详解】
    解:∵,,,
    ∴,
    ∵BD是的角平分线,
    ∴,
    在和中,
    ,
    ∴,
    ∴,
    ∵,
    ∴的周长.
    【点睛】
    本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
    3、(1);(2)①与是偏等积三角形,理由见详解;②修建小路的总造价为元
    【分析】
    (1)当时,则,证,再证与不全等,即可得出结论;
    (2)①过作于,过作于,证,得,则,再证与不全等,即可得出结论;②过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,,求出,即可求解.
    【详解】
    解:(1)当时,与是偏等积三角形,理由如下:
    设点到的距离为,则,,

    ,,

    、,
    与不全等,
    与是偏等积三角形,
    故答案为:;
    (3)①与是偏等积三角形,理由如下:
    过作于,过作于,如图3所示:

    则,
    、是等腰直角三角形,
    ,,,



    在和中,



    ,,

    ,,

    ,,
    与不全等,
    与是偏等积三角形;
    ②如图4,过点作,交的延长线于,

    则,
    点为的中点,

    在和中,










    在和中,







    由①得:与是偏等积三角形,
    ,,

    修建小路的总造价为:(元.
    【点睛】
    本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型.
    4、(1)见解析;(2)见解析;(3)2
    【分析】
    (1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
    (2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
    (3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
    【详解】
    解:(1)证明:过点B作于点Q,如图1





    又,
    ∴△


    ∴四边形是矩形


    (2)在GF上截取GH=GE,连接AH,如图2,











    (3)过点A作于点P,在FC上截取,连接,如图3,

    由(1)、(2)知,,





    ∴∠

    ∴∠


    ∴∠

    ∴AC是EH的垂直平分线,


    又∵

    ∴∠
    ∴∠
    ∵∠,
    ∴∠




    ∵∠
    ∴,即

    ∵,即

    在和中,
    AH=AM∠HAB=∠MADAB=AD
    ∴△




    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    5、(1)见详解;(2)∠MEB=40°,(3)∠GMH=80°
    【分析】
    (1)根据等角的补角性质得出∠ABD=∠CDV,根据同位角相等两直线平行可得AB∥CD;
    (2)根据AB∥CD;利用内错角相等得出∠ABD=∠RDB,根据BE∥DF,得出∠EBD=∠FDB,利用等量减等量差相等得出∠ABE=∠FDR,根据∠FDR=35°,可得∠ABE=∠FDR=35°即可;
    (3)设ME交AB于S,根据MG∥EN,得出∠NES=∠GMS=∠GES,设∠NES=y°,可得∠NEG=∠NES+∠GES=2∠NES=2y°,根据∠EBD=2∠NEG,得出∠EBD =4∠NES=4y°,根据∠EDC=∠CDB,设∠EDC=x°,得出∠CDB=7x°,根据AB∥CD,得出∠GBE+∠EBD+∠CDB=180°,可得35+4y+7x=180根据三角形内角和∠BDE=∠BDC-∠EDC=7x-x=6x,∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,利用EB平分∠DEN,得出y°+40°=180°-4y°-6x°,解方程组,解得,可证ME∥UV,根据MH⊥UV,可求∠SMH=90°,∠SMG=∠NES=10°即可.
    【详解】
    (1)证明:∵∠ABU+∠ABD=180°,∠ABU+∠CDV=180°.
    ∴∠ABU=180°-∠ABD,∠CDV=180°-∠ABU,
    ∴∠ABD=∠CDV,
    ∴AB∥CD;
    (2)解:∵AB∥CD;
    ∴∠ABD=∠RDB,
    ∴∠ABE+∠EBD=∠FDB+∠FDR,
    ∵BE∥DF,
    ∴∠EBD=∠FDB,
    ∴∠ABE=∠FDR,
    ∵∠FDR=35°,
    ∴∠ABE=∠FDR=35°,
    ∴∠MEB=∠ABE+5°=35°+5°=40°,
    (3)解:设ME交AB于S,
    ∵MG∥EN,
    ∴∠NES=∠GMS=∠GES,
    设∠NES=y°,
    ∵∠EBD=2∠NEG
    ∴∠NEG=∠NES+∠GES=2∠NES=2y°,
    ∴∠EBD =4∠NES=4y°,
    ∵∠EDC=∠CDB,
    设∠EDC=x°
    ∴∠CDB=7x°,
    ∵AB∥CD,
    ∴∠ABD+∠CDB=180°,即∠GBE+∠EBD+∠CDB=180°,
    ∴35+4y+7x=180,
    ∵∠BDE=∠BDC-∠EDC=7x-x=6x,
    ∴∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,
    ∵EB平分∠DEN,
    ∴∠NEB=∠BED,
    ∵∠NEB=∠NES+∠SEB=y°+40°,
    ∴y°+40°=180°-4y°-6x°,
    ∴,
    解得,
    ∴∠EBD=4y°=40°=∠MEB,
    ∴ME∥UV,
    ∵MH⊥UV,
    ∴MH⊥ME,
    ∴∠SMH=90°,,
    ∵∠SMG=∠NES=10°,
    ∴∠GMH=90°-∠SMG=90°-10°=80°.

    【点睛】
    本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键.
    6、
    (1);
    (2).
    【分析】
    (1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
    (2)根据垂直得出,然后根据三角形内角和定理即可得.
    (1)
    解:∵,,
    ∴,
    ∵AD是角平分线,
    ∴,
    ∴;
    (2)
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
    7、见解析
    【分析】
    由“ASA”可证△ABO≌△DCO,可得结论.
    【详解】
    证明:如图,记的交点为

    ∵∠ABC=∠DCB,∠1=∠2,
    又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,
    ∴∠OBC=∠OCB,
    ∴OB=OC,
    在△ABO和△DCO中,,
    ∴△ABO≌△DCO(ASA),
    ∴AB=DC.
    【点睛】
    本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.
    8、(1)见解析;(2)见解析
    【分析】
    (1)根据CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出结论;
    (2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出结论.
    【详解】
    证明:(1)∵CE⊥AB,BF⊥AC,
    ∴∠BED=∠CFD=90°,
    在△BED和△CFD中,

    ∴△BED≌△CFD(AAS);
    (2)∵△BED≌△CFD,
    ∴DE=DF,
    ∴BD+DF=CD+DE,
    ∴BF=CE,
    在△ABF和△ACE中,

    ∴△ABF≌△ACE(AAS),
    ∴AE=AF.
    【点睛】
    本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键.
    9、
    【分析】
    先由旋转的性质证明再利用等边对等角证明从而可得答案.
    【详解】
    解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°,



    【点睛】
    本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.
    10、
    (1)证明见解析;
    (2)证明见解析.
    【分析】
    (1)根据全等三角形的判定定理可直接证明;
    (2)根据(1)中结论可得,再由等角对等边得出,运用等式的性质进行计算即可证明.
    (1)
    解:在与中,

    ∴;
    (2)
    由(1)可得:,
    ∴,
    ∵,
    ∴,
    ∴,
    即.
    【点睛】
    题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键.

    相关试卷

    数学第十四章 三角形综合与测试课后测评: 这是一份数学第十四章 三角形综合与测试课后测评,共34页。试卷主要包含了如图,AB=AC,点D等内容,欢迎下载使用。

    数学七年级下册第十四章 三角形综合与测试当堂达标检测题: 这是一份数学七年级下册第十四章 三角形综合与测试当堂达标检测题,共34页。试卷主要包含了下列三角形与下图全等的三角形是,定理等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试达标测试: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试达标测试,共32页。试卷主要包含了下列四个命题是真命题的有等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map