沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题
展开
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题,共35页。试卷主要包含了下列叙述正确的是,如图,点A等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,,,的相关数据如图所示,则下列选项正确的是( )
A. B. C. D.
2、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )
A.56° B.34° C.44° D.46°
3、下列长度的三条线段能组成三角形的是( )
A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,7
4、根据下列已知条件,不能画出唯一的是( )
A.,, B.,,
C.,, D.,,
5、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50° B.70° C.110° D.120°
6、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)().若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )
A. B. C. D.
7、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
8、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
9、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,,,添加下列条件不能判定的是( )
A. B. C. D.
10、下列四个命题是真命题的有( )
①同位角相等;
②相等的角是对顶角;
③直角三角形两个锐角互余;
④三个内角相等的三角形是等边三角形.
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、△ABC的高AD所在直线与高BE所在直线相交于点F且DF=CD,则∠ABC=______.
2、如图,已知,请添加一个条件,使得,则添加的条件可以为___(只填写一个即可).
3、如图,两根旗杆CA,DB相距20米,且CA⊥AB,DB⊥AB,某人从旗杆DB的底部B点沿BA走向旗杆CA底部A点.一段时间后到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角∠CMD=90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为每秒2米,则这个人从点B到点M所用时间是 _____秒.
4、已知△ABC是等腰三角形,若∠A=70°,则∠B=_____.
5、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是________.
三、解答题(10小题,每小题5分,共计50分)
1、中,CD平分,点E是BC上一动点,连接AE交CD于点D.
(1)如图1,若,AE平分,则的度数为______;
(2)如图2,若,,,则的度数为______;
(3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,.试判断AB与CF的位置关系,并证明你的结论.
2、如图,四边形中,,,于点.
(1)如图1,求证:;
(2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
(3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
3、数学课上,王老师布置如下任务:
如图,已知∠MAN<45°,点B是射线AM上的一个定点,在射线AN上求作点C,使∠ACB=2∠A.
下面是小路设计的尺规作图过程.
作法:①作线段AB的垂直平分线l,直线l交射线AN于点D;
②以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求.
根据小路设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:连接BD,BC,
∵直线l为线段AB的垂直平分线,
∴DA= ,( )(填推理的依据)
∴∠A=∠ABD,
∴∠BDC=∠A+∠ABD=2∠A.
∵BC=BD,
∴∠ACB=∠ ,( )(填推理的依据)
∴∠ACB=2∠A.
4、已知:如图,,,求证:
5、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.
(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.
(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.
(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.
6、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
7、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.
(1)若∠BAC=40°,求∠E的度数;
(2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.
8、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.
9、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.
(1)求的度数;
(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
10、已知:如图,在ABC中,AB=AC,点D、E分别在边BC,AC上,AD=AE.
(1)若∠BAD=30°,则∠EDC= °;若∠EDC=20°,则∠BAD= °.
(2)设∠BAD=x,∠EDC=y,写出y与x之间的关系式,并给出证明.
-参考答案-
一、单选题
1、D
【分析】
根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.
【详解】
解:,
,
在与ΔFED中,
,
∴≅ΔFED,
∴,
A、B、C三个选项均不能证明,
故选:D.
【点睛】
题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.
2、C
【分析】
依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
【详解】
解:如图:
∵l1∥l2,∠1=46°,
∴∠3=∠1=46°,
又∵l3⊥l4,
∴∠2=90°﹣46°=44°,
故选:C.
【点睛】
本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
3、C
【分析】
根据三角形的三边关系,逐项判断即可求解.
【详解】
解:A、因为 ,所以不能组成三角形,故本选项不符合题意;
B、因为 ,所以不能组成三角形,故本选项不符合题意;
C、因为 ,所以能组成三角形,故本选项符合题意;
D、因为 ,所以不能组成三角形,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
4、B
【分析】
根据三角形存在的条件去判断.
【详解】
∵,,,满足ASA的要求,
∴可以画出唯一的三角形,A不符合题意;
∵,,,∠A不是AB,BC的夹角,
∴可以画出多个三角形,B符合题意;
∵,,,满足SAS的要求,
∴可以画出唯一的三角形,C不符合题意;
∵,,,AB最大,
∴可以画出唯一的三角形,D不符合题意;
故选B.
【点睛】
本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
5、B
【分析】
根据旋转可得,,得.
【详解】
解:,,
,
将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
,,
.
故选:B.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
6、B
【分析】
过点作轴于,由“”可证,可得,,即可求解.
【详解】
解:如图,过点作轴于,
点,
,
是等腰直角三角形,且,
,
,
,
在和中,
,
,
,,
,
,
,
故选:B.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.
7、C
【分析】
根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.
【详解】
解:∵BF是∠AB的角平分线,
∴∠DBF=∠CBF,
∵DE∥BC,
∴∠DFB=∠CBF,
∴∠DBF=∠DFB,
∴BD=DF,
∴△BDF是等腰三角形;故①正确;
同理,EF=CE,
∴DE=DF+EF=BD+CE,故②正确;
∵∠A=50°,
∴∠ABC+∠ACB=130°,
∵BF平分∠ABC,CF平分∠ACB,
∴,
∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,
∴∠BFC=180°﹣65°=115°,故③正确;
当△ABC为等腰三角形时,DF=EF,
但△ABC不一定是等腰三角形,
∴DF不一定等于EF,故④错误.
故选:C.
【点睛】
本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.
8、D
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
9、A
【分析】
根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.
【详解】
解:
A. ,,不能根据SSA证明三角形全等,故该选项符合题意;
B.
,
故能判定,不符合题意;
C. ,,
,故能判定,不符合题意;
D.
,故能判定,不符合题意;
故选A
【点睛】
本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.
10、B
【分析】
利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.
【详解】
①两直线平行,同位角相等,故错误,是假命题;
②相等的角是对顶角,错误,是假命题;
③直角三角形两个锐角互余,正确,是真命题;
④三个内角相等的三角形是等边三角形,正确,是真命题,
综上所述真命题有2个,
故选:B.
【点睛】
本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.
二、填空题
1、45°或135°
【分析】
根据题意,分两种情况讨论:①当为锐角三角形时;②当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.
【详解】
解:①如图所示:当为锐角三角形时,
∵,,
∴,
∴,,
∴,
在ΔBDF与中,
,
∴ΔBDF≅ΔADC,
∴,
∵,
∴;
②如图所示:当为钝角三角形时,
∵,,
∴,
∴,,
∴,
∵,
∴,
在ΔBDF与中,
,
∴ΔBDF≅ΔADC,
∴,
∵,
∴,
,
综合①②可得:为或,
故答案为:或.
【点睛】
题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.
2、或
【分析】
根据全等三角形的判定方法即可解决问题.
【详解】
解:由题意,,
根据,可以添加,使得,
根据,可以添加,使得.
故答案为:或
【点睛】
本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.
3、4
【分析】
先说明,再利用证明,然后根据全等三角形的性质可得米,再根据线段的和差求得BM的长,最后利用时间=路程÷速度计算即可.
【详解】
解:∵,
∴,
又∵,
∴,
∴,
在和中,
,
∴,
∴米,
(米),
∵该人的运动速度,
他到达点M时,运动时间为s.
故答案为:4.
【点睛】
本题主要考查了全等三角形的判定与性质,根据题意证得是解答本题的关键.
4、或或
【分析】
分①是顶角,是底角,②是底角,是底角,③是底角,是顶角三种情况,再根据等腰三角形的定义、三角形的内角和定理即可得.
【详解】
解:由题意,分以下三种情况:
①当是顶角,是底角时,
则;
②当是底角,是底角时,
则;
③当是底角,是顶角时,
则;
综上,的度数为或或,
故答案为:或或.
【点睛】
本题考查了等腰三角形、三角形的内角和定理,正确分三种情况讨论是解题关键.
5、或
【分析】
因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.
【详解】
解:①当为底时,其它两边都为,
、、可以构成三角形,
周长为;
②当为底时,其它两边都为,
、、可以构成三角形,
周长为;
故答案为:或.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.
三、解答题
1、(1)40°;(2)10°;(3)AB∥CF,理由见解析
【分析】
(1)根据三角形的角和定理和角平分线的定义可求得∠BAC+∠ACB=140°即可求解;
(2)根据三角形的外角性质求得∠B+∠BAE=47°即可求解;
(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到∠FCG=2∠F,再根据角平分线的定义和等角的余角相等得到∠BCF=2∠F,则有∠B=∠BCF,根据平行线在判定即可得出结论.
【详解】
解:(1)∵∠ADC=110°,
∴∠DAC+∠DCA=180°-110°=70°,
∵AE平分∠BAC,CD平分∠ACB,
∴∠BAC=2∠DAC,∠ACB=2∠DCA,
∴∠BAC+∠ACB=2(∠DAC+∠DCA)=140°,
∴∠B=180°-(∠BAC+∠ACB)=180°-140°=40°,
故答案为:40°;
(2)∵∠ADC=∠DCE+∠DEC=100°,∠DCE=53°,
∴∠DEC=100°-53°=47°,
∴∠B+∠BAE=∠DEC=47°,
∵∠B-∠BAE=27°,
∴∠BAE=10°,
故答案为:10°;
(3)AB∥CF,理由为:
如图,延长AC到G,
∵AC=CF,
∴∠F=∠FAC,
∴∠FCG=∠F+∠FAC=2∠F,
∵CF⊥CD,
∴∠BCF+∠BCD=90°,∠FCG+∠ACD=90°,
∵CD平分∠ACB,
∴∠BCD=∠ACD,
∴∠BCF=∠FCG=2∠F,
∵∠B=2∠F,
∴∠B=∠BCF,
∴AB∥CF.
【点睛】
本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键.
2、(1)见解析;(2)见解析;(3)2
【分析】
(1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
(2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
(3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
【详解】
解:(1)证明:过点B作于点Q,如图1
∵
又,
∴△
∴四边形是矩形
;
(2)在GF上截取GH=GE,连接AH,如图2,
又
(3)过点A作于点P,在FC上截取,连接,如图3,
由(1)、(2)知,,
∵
∴
∵
∴
∴
∴∠
∵
∴∠
∴
∵
∴∠
∴
∴AC是EH的垂直平分线,
∴
∴
又∵
∴
∴∠
∴∠
∵∠,
∴∠
∴
∵
∴
∴
∵∠
∴,即
∴
∵,即
∴
在和中,
AH=AM∠HAB=∠MADAB=AD
∴△
∴
∴
∴
∴
【点睛】
本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
3、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC; 等边对等角.
【分析】
(1)根据题目中的小路的尺规作图过程,直接作图即可.
(2)根据垂直平分线的性质以及等边对等角进行解答即可.
【详解】
解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;
(2)解:证明:连接BD,BC,
∵直线l为线段AB的垂直平分线,
∴DA= DB ,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)
∴∠A=∠ABD,
∴∠BDC=∠A+∠ABD=2∠A.
∵BC=BD,
∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)
∴∠ACB=2∠A.
【点睛】
本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.
4、证明见解析
【分析】
由,,结合公共边 从而可得结论.
【详解】
证明:在与中,
【点睛】
本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.
5、(1)(2)见解析(3)
【分析】
(1)利用边相等和角相等,直接证明,即可得到结论.
(2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
(3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
【详解】
(1)解:
,,
,
在和中,
,
.
(2)解:当点D在线段AC的延长线上时,如下图所示:
,,
,
在和中,
,
,,
.
(3)解:,如下图所示:
,,
,
在和中,
,
,,
.
【点睛】
本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.
6、证明见解析.
【分析】
先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
【详解】
证明:,
,
,
,
,
在和中,,
,
.
【点睛】
本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
7、(1)∠E=35°;(2)AH⊥BE.理由见解析.
【分析】
(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
(2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
【详解】
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵∠BAC=40°,
∴∠ABC=(180°-∠BAC)=70°,
∵BD平分∠ABC,
∴∠CBD=∠ABC=35°,
∵AE∥BC,
∴∠E=∠CBD=35°;
(2)∵BD平分∠ABC,∠E=∠CBD,
∴∠CBD=∠ABD=∠E,
∴AB=AE,
在△ABD和△AEF中,
,
∴△ABD≌△AEF(SAS),
∴AD=AF,
∵点H是DF的中点,
∴AH⊥BE.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.
8、见解析
【分析】
根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.
【详解】
解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,
∴∠BAD=∠CAD,
∵DE∥AB,
∴∠ADE=∠BAD,
∴∠ADE=∠CAD,
∴AE=ED,
∴△AED是等腰三角形.
【点睛】
本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.
9、(1)70°;(2)15km/h
【分析】
(1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
【详解】
解:(1)根据题意得∠BAC=70°,∠ABC=40°,
∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
(2)∵∠BAC=∠ACB=70°,
∴BC=AB=75km,
∴轮船的速度为75÷5=15(km/h).
【点睛】
本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
10、(1)15,40;(2)y=x,见解析
【分析】
(1)设∠EDC=m,则∠B=∠C=n,根据∠ADE=∠AED=m+n,∠ADC=∠B+∠BAD即可列出方程,从而求解.
(2)设∠BAD=x,∠EDC=y,根据等腰三角形的性质可得∠B=∠C,∠ADE=∠AED=∠C+∠EDC=∠B+y,由∠ADC=∠B+∠BAD=∠ADE+∠EDC即可得∠B+x=∠B+y+y,从而求解.
【详解】
解:(1)设∠EDC=m,∠B=∠C=n,
∵∠AED=∠EDC+∠C=m+n,
又∵AD=AE,
∴∠ADE=∠AED=m+n,
则∠ADC=∠ADE+∠EDC=2m+n,
又∵∠ADC=∠B+∠BAD,
∴∠BAD=2m,
∴2m+n=n+30,解得m=15°,
∴∠EDC的度数是15°;
若∠EDC=20°,则∠BAD=2m=2×20°=40°.
故答案是:15;40;
(2)y与x之间的关系式为y=x,
证明:设∠BAD=x,∠EDC=y,
∵AB=AC,AD=AE,
∴∠B=∠C,∠ADE=∠AED,
∵∠AED=∠C+∠EDC=∠B+y,
∴∠ADC=∠B+∠BAD=∠ADE+∠EDC,
∴∠B+x=∠B+y+y,
∴2y=x,
∴y=x.
【点睛】
本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共34页。试卷主要包含了如图等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共33页。试卷主要包含了下列三个说法等内容,欢迎下载使用。
这是一份2021学年第十四章 三角形综合与测试复习练习题,共33页。试卷主要包含了下列三角形与下图全等的三角形是,已知长方形纸片ABCD,点E等内容,欢迎下载使用。