![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含详细解析)01](http://img-preview.51jiaoxi.com/2/3/12709142/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含详细解析)02](http://img-preview.51jiaoxi.com/2/3/12709142/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(含详细解析)03](http://img-preview.51jiaoxi.com/2/3/12709142/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题
展开七年级数学第二学期第十三章相交线 平行线同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
2、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )
A.70° B.80° C.100° D.110°
3、下列说法中,正确的是( )
A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
B.互相垂直的两条直线不一定相交
C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
D.过一点有且只有一条直线垂直于已知直线
4、如图所示,给出了过直线外一点P作已知直线l的平行线的方法,其依据是( ).
A.同位角相等,两直线平行. B.内错角相等,两直线平行.
C.同旁内角互补,两直线平行. D.以上都不对.
5、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )
A.30° B.60° C.30°或60° D.60°或120°
6、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
7、在如图中,∠1和∠2不是同位角的是( )
A. B.
C. D.
8、若∠1与∠2是内错角,则它们之间的关系是 ( )
A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2
9、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )
A.100° B.140° C.160° D.105°
10、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为( )
A.40° B.50° C.140° D.150°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下列命题:①等角的余角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等;⑤过直线外一点作这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.叙述正确的序号是________.
2、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:
证明:∵AB被直线GH所截,
∴_____
∵
∴______
∴______________(________)(填推理的依据).
3、如图,点E是BA延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D;③∠2=∠4;④∠B+∠BCD=180°,能判定ABCD的有___.(填序号)
4、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.
5、规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.
三、解答题(10小题,每小题5分,共计50分)
1、根据要求画图或作答:如图所示,已知A、B、C三点.
(1)连结线段AB;
(2)画直线AC和射线BC;
(3)过点B画直线AC的垂线,垂足为点D,则点A到直线BD的距离是线段_______的长度.
2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.
(1)如果∠2=∠3,那么____________.(____________,____________)
(2)如果∠2=∠5,那么____________.(____________,____________)
(3)如果∠2+∠1=180°,那么____________.(____________,____________)
(4)如果∠5=∠3,那么____________.(____________,____________)
3、完成下列证明:已知,,垂足分别为、,且,求证.
证明:,(已知),
( )
( )
( )
又(已知)
( )
( )
4、如图,在中,平分交于D,平分交于F,已知,求证:.
5、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.
6、如图,方格纸中每个小正方形的边长都是1.
(1)过点P分别画PM∥AC、PN∥AB,PM与AB相交于点M,PN与AC相交于点N.
(2)求四边形PMAN的面积.
7、如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D是∠ABC的边BC上的一点,点M是∠ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:
(1)过点M画BC的平行线MN交AB于点N;
(2)过点D画BC的垂线DE,交AB于点E;
(3)点E到直线BC的距离是线段 的长度.
8、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣ (邻补角定义)
=180°﹣ °
= °
∵OC平分∠AOF(已知)
∴∠AOC∠AOF( )
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC( )
=180°﹣90°﹣ °
= °
9、如图,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.
(1)若点B在点A的左侧,求∠ABC的度数(用含n的代数式表示);
(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.
10、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.
(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;
(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);
(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).
-参考答案-
一、单选题
1、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
2、B
【分析】
先证明DEBC,根据平行线的性质求解.
【详解】
解:因为∠B=∠ADE=70°
所以DEBC,
所以∠DEC+∠C=180°,所以∠C=80°.
故选:B.
【点睛】
此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.
3、C
【分析】
根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
【详解】
从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
故选:C.
【点睛】
本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
4、A
【分析】
由作图可得同位角相等,根据平行线的判定可作答.
【详解】
解:由图形得,有两个相等的同位角,所以依据为:同位角相等,两直线平行.
故选:A.
【点睛】
本题考查的是作平行线,熟知过直线外一点,作已知直线的平行线的方法和平行线的判定定理是解答此题的关键.
5、D
【分析】
根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
【详解】
解:如图1,
∵a∥b,
∴∠1=∠α,
∵c∥d,
∴∠β=∠1=∠α=60°;
如图(2),
∵a∥b,
∴∠α+∠2=180°,
∵c∥d,
∴∠2=∠β,
∴∠β+∠α=180°,
∵∠α=60°,
∴∠β=120°.
综上,∠β=60°或120°.
故选:D.
【点睛】
本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
6、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
7、D
【分析】
同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.
【详解】
解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.
故选:D.
【点睛】
本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.
8、D
【分析】
根据内错角角的定义和平行线的性质判断即可.
【详解】
解:∵只有两直线平行时,内错角才可能相等,
∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
三种情况都有可能,
故选D.
【点睛】
本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
9、B
【分析】
根据方位角的含义先求解 再利用角的和差关系可得答案.
【详解】
解:如图,标注字母,
射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,
而
故选B
【点睛】
本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.
10、C
【分析】
由于拐弯前、后的两条路平行,用平行线的性质求解即可.
【详解】
解:∵拐弯前、后的两条路平行,
∴(两直线平行,内错角相等).
故选:C.
【点睛】
本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
二、填空题
1、①
【分析】
根据相交线与平行线中的一些概念、性质判断,得出结论.
【详解】
①等角的余角相等,故正确;
②中,需要前提条件:过直线外一点,故错误;
③中,相等的角不一定是对顶角,故错误;
④中,仅当两直线平行时,同位角才相等,故错误;
⑤中应为垂线段的长度叫做这个点到这条直线的距离,故错误.
故答案为:①.
【点睛】
本题考查概念、性质的判定,注意,常考错误类型为某一个性质缺少前提条件的情况,因此我们需要格外注意每一个性质的前提条件.解题的关键是熟练掌握以上概念、性质的判定.
2、3 180° AB CD 同旁内角互补,两直线平行
【分析】
先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.
【详解】
证明:∵AB被直线GH所截,∠1=112°,
∴∠1=∠3=112°
∵∠2=68°,
∴∠2+∠3=180°,
∴AB∥CD,(同旁内角互补,两直线平行)
故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.
【点睛】
本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.
3、②③④
【分析】
根据平行线的判定方法分别判定得出答案.
【详解】
解:①中,∵∠1=∠3,∴AD//BC(内错角相等,两直线平行),故此选项不符合题意;
②中,∵∠5=∠D,∴AB//CD(内错角角相等,两直线平行),故此选项符合题意;
③中,∵∠2=∠4,∴AB//CD(内错角角相等,两直线平行)),故此选项符合题意;
④中,∠B+∠BCD=180°,∴AB//CD (同旁内角互补,两直线平行),故此选项符合题意;
故答案为:②③④.
【点睛】
此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.
4、
【分析】
根据,可得,再根据对顶角相等即可求出的度数.
【详解】
解:∵,
∴
∴
∵
∴
故答案为:
【点睛】
本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.
5、a1∥a100;
【分析】
从已知两直线的位置关系,运用平行线的性质,观察分析得几条特殊直线与a1的位置关系为a1∥a4,a1∥a5;a1⊥a2,a1 ⊥a3;且a1与an的位置关系是4为周期进行循环,下角标的余数为0或1时与a1平行,下角标的余数为2或3时与a1垂直,计算100=4×25,余数为0判定两直线的位置关系为a1∥a100.
【详解】
解:在同一平面内有直线两直线的位置,
关系是相交或平行,如图所示:
∵a1⊥a2,a2∥a3,
∴a1 ⊥a3,
又∵a3⊥a4,
∴a1∥a4,
又∵a4∥as,
∴a1∥a5,
又∵a5⊥a6,
∴a1⊥a6,
又∵a6∥a7,
∴a1⊥a7,
…
从以上的规律可知:a1与an的位置关系是4为周期进行循环,
若下角标的余数为0或1时与a1平行;若下角标的余数为2或3时与a1垂直.
∵100=4×25,
∴a1∥a100,
故答案为:a1∥a100.
【点睛】
本题综合考查了平行线的性质,同一平面内图形的变化规律,倍数和余数的运用等相关知识点,重点是掌握平行线的性质,难点是掌握由特殊到一般图形变化规律在几何中的运用.
三、解答题
1、(1)画图见解析;(2)画图见解析;(3)画图见解析,
【分析】
(1)连接即可;
(2)过两点画直线即可,以为端点画射线即可;
(3)利用三角尺过画的垂线,垂足为 可得 从而可得点A到直线BD的距离是垂线段的长度.
【详解】
解:(1)如图,线段AB即为所求作的线段,
(2)如图,直线AC和射线BC即为所求作的直线与射线,
(3)如图,BD即为所画的垂线,
点A到直线BD的距离是线段的长度.
故答案为:
【点睛】
本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.
2、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;
【分析】
(1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;
(2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;
(3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;
(4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.
【详解】
(1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);
(2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);
(3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);
(4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.
故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.
【点睛】
本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.
3、见详解
【分析】
根据垂直的定义及平行线的性质与判定可直接进行求解.
【详解】
证明:,(已知),
(垂直的定义)
(同位角相等,两直线平行)
(两直线平行,同位角相等)
又(已知)
(等量代换)
(内错角相等,两直线平行).
【点睛】
本题主要考查垂直的定义及平行线的性质与判定,熟练掌握垂直的定义及平行线的性质与判定是解题的关键.
4、见解析
【分析】
根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.
【详解】
证明:(已知),
(同位角相等,两直线平行),
(两直线平行,同位角相等),
平分,平分(已知),
,(角平分线的定义),
(等量代换).
(同位角相等,两直线平行).
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.
5、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.
【分析】
由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.
【详解】
解:因为∠BOC+∠AOC=180º(平角定义),
所以∠AOC是∠BOC的补角,
∠AOD=∠BOC(已知),
所以∠BOC+∠BOD=180º.
所以∠BOD是∠BOC的补角.
所以∠BOC的补角有两个:∠BOD和∠AOC.
因为∠AOC和∠BOC相邻,
所以∠BOC的邻补角为:∠AOC.
∠BOC没有对顶角.
【点睛】
本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.
6、(1)见解析;(2)18.
【分析】
(1)直接利用网格结合平行线的判定方法得出答案;
(2)利用四边形PMAN所在矩形减去周围三角形面积得出答案.
【详解】
解:(1)如图所示:点M,点N即为所求;
(2)四边形PMAN的面积为:5×7﹣×3×3﹣×2×4﹣×2×4﹣×3×3=18.
【点睛】
本题考查网格与作图—作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键.
7、(1)见解析;(2)见解析;(3)DE
【分析】
(1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;
(2)根据垂线的定义作图即可;
(3)根据点到直线的距离的定义求解即可.
【详解】
解:(1)如图所示,点N即为所求;
(2)如图所示,点E即为所求;
(3)由题意可知:点E到直线BC的距离是线段DE的长度,
故答案为:DE.
【点睛】
本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解.
8、角平分线的定义,平角的定义,
【分析】
先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
【详解】
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣(邻补角定义)
=180°﹣40°
=140°
∵OC平分∠AOF(已知)
∴∠AOC∠AOF(角平分线的定义)
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
=180°﹣90°﹣70°
=20°
故答案为:角平分线的定义,平角的定义,
【点睛】
本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
9、(1);(2)∠ABC的度数改变,度数为.
【分析】
(1)过点E作,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数;
(2)过点E作,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数.
【详解】
(1)如图1,过点作.
∵,
∴,
∴.
∵平分平分,,
∴.
∵,
∴,
∴.
(2)的度数改变.
画出的图形如图2,过点作.
∵平分,平分,,
∴ .
∵,
∴,
∴.
∵,
∴,
∴,
∴.
【点睛】
本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.熟练掌握平行线的判定与性质是解答本题的关键.
10、(1);(2);(3)
【分析】
(1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;
(2)由折叠的性质,先求出,然后求出∠FEG的度数即可;
(3)由折叠的性质,先求出,然后求出∠FEG的度数即可.
【详解】
解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,
∴,,
∴;
(2)根据题意,则
,,
∵,
∴,
∴,
∴;
(3)根据题意,
,,
∵,
∴,
∴,
∴;
【点睛】
本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.
七年级下册第十三章 相交线 平行线综合与测试练习题: 这是一份七年级下册第十三章 相交线 平行线综合与测试练习题,共26页。试卷主要包含了下列关于画图的语句正确的是.等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共31页。试卷主要包含了如图,在,下列命题中,为真命题的是,如图,,交于点,,,则的度数是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练: 这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练,共32页。试卷主要包含了如图,,交于点,,,则的度数是,下列说法中正确的有,如图,直线b等内容,欢迎下载使用。