|试卷下载
搜索
    上传资料 赚现金
    2022年沪教版七年级数学第二学期第十四章三角形同步测评练习题(精选)
    立即下载
    加入资料篮
    2022年沪教版七年级数学第二学期第十四章三角形同步测评练习题(精选)01
    2022年沪教版七年级数学第二学期第十四章三角形同步测评练习题(精选)02
    2022年沪教版七年级数学第二学期第十四章三角形同步测评练习题(精选)03
    还剩39页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    七年级下册第十四章 三角形综合与测试课后作业题

    展开
    这是一份七年级下册第十四章 三角形综合与测试课后作业题,共42页。

    沪教版七年级数学第二学期第十四章三角形同步测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,≌,和是对应角,和是对应边,则下列结论中一定成立的是( )

    A. B.
    C. D.
    2、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
    A.10 B.8 C.7 D.4
    3、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( )

    A.12 B.14 C.16 D.18
    4、根据下列已知条件,不能画出唯一的是( )
    A.,, B.,,
    C.,, D.,,
    5、下列长度的三条线段能组成三角形的是( )
    A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
    6、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,,,在BD上有一动点E,则的最小值为( )

    A.7 B.8 C.10 D.12
    7、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
    A.1个 B.2个 C.3个 D.4个
    8、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为(  )

    A.∠B=∠ADC B.2∠B=∠ADC
    C.∠B+∠ADC=180° D.∠B+∠ADC=90°
    9、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是(  )

    A.8 B.10 C.9 D.16
    10、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是( )

    A.1个 B.2个 C.3个 D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在Rt△ABC中,∠C=90°,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若∠EPF=45°,连接EF,当AC=6,BC=8,AB=10时,则△CEF的周长为 _____.

    2、两角和它们的夹边分别相等的两个三角形全等(可以简写成 _____).
    3、如图,在中,BD和CD分别是和的平分线,EF过点D,且,若,,则EF的长为______.

    4、△ABC的高AD所在直线与高BE所在直线相交于点F且DF=CD,则∠ABC=______.
    5、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.

    (1)如图1,求证:AD=BE;
    (2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.
    2、如图,,,E为BC中点,DE平分.

    (1)求证:平分;
    (2)求证:;
    (3)求证:.
    3、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.

    (1)如图1,当时,直接写出BC与CE的位置关系;
    (2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
    4、如图,点D在AC上,BC,DE交于点F,,,.

    (1)求证:;
    (2)若,求∠CDE的度数.
    5、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.

    (1)若,求的度数;
    (2)若,求的大小;
    (3)猜想CF,BF,AF之间的数量关系,并证明.
    6、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
    (1)△AMN是否是等腰三角形?说明理由;
    (2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
    ①求证:△BPM是等腰三角形;
    ②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).

    7、如图,四边形中,,,于点.

    (1)如图1,求证:;
    (2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
    (3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
    8、已知∠POQ=120°,点A,B分别在OP,OQ上,OA<OB,连接AB,在AB上方作等边△ABC,点D是BO延长线上一点,且AB=AD,连接AD
    (1)补全图形;
    (2)连接OC,求证:∠COP=∠COQ;
    (3)连接CD,CD交OP于点F,请你写出一个∠DAB的值,使CD=OB+OC一定成立,并证明


    9、已知:
    (1)O是∠BAC内部的一点.
    ①如图1,求证:∠BOC>∠A;
    ②如图2,若OA=OB=OC,试探究∠BOC与∠BAC的数量关系,给出证明.
    (2)如图3,当点O在∠BAC的外部,且OA=OB=OC,继续探究∠BOC与∠BAC的数量关系,给出证明.

    10、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB =∠AOB.
    我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.
    已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.
    求证:∠APB =∠AOB.


    -参考答案-
    一、单选题
    1、D
    【分析】
    根据全等三角形的性质求解即可.
    【详解】
    解:∵≌,和是对应角,和是对应边,
    ∴,,
    ∴,
    ∴选项A、B、C错误,D正确,
    故选:D.
    【点睛】
    本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.
    2、C
    【分析】
    根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
    【详解】
    解:条线段的长分别是4,4,m,若它们能构成三角形,则
    ,即
    又为整数,则整数m的最大值是7
    故选C
    【点睛】
    本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
    3、B
    【分析】
    如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽.
    【详解】
    解:如图,延长NO交AD的延长线于点P,

    设BC=x,则AB=3x,
    ∵折叠,
    ∴AB=BM=CO=CD=PO=3x,
    ∴纸条的宽为:MO=NO=3x+3x+x=7x,
    ∴纸条的长为:2PN=2(7x+3x)=20x=40
    解得:x=2,
    ∴纸条的宽NO=7×2=14.
    故答案为:B.
    【点睛】
    此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.
    4、B
    【分析】
    根据三角形存在的条件去判断.
    【详解】
    ∵,,,满足ASA的要求,
    ∴可以画出唯一的三角形,A不符合题意;
    ∵,,,∠A不是AB,BC的夹角,
    ∴可以画出多个三角形,B符合题意;
    ∵,,,满足SAS的要求,
    ∴可以画出唯一的三角形,C不符合题意;
    ∵,,,AB最大,
    ∴可以画出唯一的三角形,D不符合题意;
    故选B.
    【点睛】
    本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
    5、C
    【分析】
    根据组成三角形的三边关系依次判断即可.
    【详解】
    A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
    B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
    C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.
    D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
    6、C
    【分析】
    作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可.
    【详解】
    解:如图,

    是等边三角形,

    ∵D为AC中点,
    ∴,,,

    作点关于的对称点,连接交于,连接,此时的值最小.最小值,
    ,,




    是等边三角形,

    的最小值为.
    故选:C.
    【点睛】
    本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
    7、C
    【分析】
    根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
    【详解】
    解:c的范围是:5﹣3<c<5+3,即2<c<8.
    ∵c是奇数,
    ∴c=3或5或7,有3个值.
    则对应的三角形有3个.
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系,准确分析判断是解题的关键.
    8、C
    【分析】
    由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.
    【详解】
    解:在射线AD上截取AE=AB,连接CE,如图所示:

    ∵∠BAD=90°,AC平分∠BAD,
    ∴∠BAC=∠EAC,
    在△ABC与△AEC中,

    ∴△ABC≌△AEC(SAS),
    ∴BC=EC,∠B=∠AEC,
    ∵CB=CD,
    ∴CD=CE,
    ∴∠CDE=∠CED,
    ∴∠B=∠CDE,
    ∵∠ADC+∠CDE=180°,
    ∴∠ADC+∠B=180°.
    故选:C.
    【点睛】
    本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.
    9、C
    【分析】
    延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=SΔCDE,得出SΔADC=12SΔABC,求解即可.
    【详解】
    解:如图,延长BD交AC于点E,

    ∵AD平分,,
    ∴,,
    在和中,

    ∴,
    ∴,
    ∴SΔABD=SΔADE,SΔBDC=SΔCDE,
    ∴SΔADC=12SΔABC=12×18=9,
    故选:C.
    【点睛】
    题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.
    10、D
    【分析】
    由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.
    【详解】
    解:∵△DAC和△EBC均是等边三角形,
    ∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
    ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,∠MCN=180°-∠ACD-∠BCE=60°,
    在△ACE和△DCB中,


    ∴△ACE≌△DCB(SAS),则①正确;
    ∴AE=BD,∠CAE=∠CDB,
    在ACM和△DCN中,

    ∴△ACM≌△DCN(ASA),
    ∴CM=CN,;则②正确;
    ∵∠MCN=60°,
    ∴为等边三角形;则③正确;
    ∵∠DAC=∠ECB=60°,
    ∴AD∥CE,
    ∴∠DAO=∠NEO=∠CBN,
    ∴;则④正确;
    ∴正确的结论由4个;
    故选D.
    【点睛】
    本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.
    二、填空题
    1、4
    【分析】
    根据题意过点P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一点J,使得MJ=FN,连接PJ,进而利用全等三角形的性质证明EF=EM+EN,即可得出结论.
    【详解】
    解:如图,过点P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一点J,使得MJ=FN,连接PJ.

    ∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,
    ∴PM=PK,PK=PN,
    ∴PM=PN,
    ∵∠C=∠PMC=∠PNC=90°,
    ∴四边形PMCN是矩形,
    ∴四边形PMCN是正方形,
    ∴CM=PM,
    ∴∠MPN=90°,
    在△PMJ和△PNF中,

    ∴△PMJ≌△PNF(SAS),
    ∴∠MPJ=∠FPN,PJ=PF,
    ∴∠JPF=∠MPN=90°,
    ∵∠EPF=45°,
    ∴∠EPF=∠EPJ=45°,
    在△PEF和△PEJ中,

    ∴△PEF≌△PEJ(SAS),
    ∴EF=EJ,
    ∴EF=EM+FN,
    ∴△CEF的周长=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,
    ∵S△ABC=•BC•AC=(AC+BC+AB)•PM,
    ∴PM=2,
    ∴△ECF的周长为4,
    故答案为:4.
    【点睛】
    本题考查角平分线的性质定理,正方形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问.
    2、角边角或
    【分析】
    根据全等三角形的判定定理得出即可.
    【详解】
    解答:解:两角和它们的夹边分别相等的两个三角形全等,简写成角边角或ASA,
    故答案为:角边角或ASA.
    【点睛】
    本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.
    3、7
    【分析】
    根据角平分线的定义和平行线的性质证明∠EBD=∠EDB,∠FDC=∠FCD,得到BE=DE,CF=DF,即可求解.
    【详解】
    解:∵EF∥BC,
    ∴∠EDB=∠DBC,∠FDC=∠DCB,
    又∵BD和CD分别是∠ABC和∠ACB的平分线,
    ∴∠EBD=∠DBC,∠FCD=∠DCB,
    ∴∠EBD=∠EDB,∠FDC=∠FCD,
    ∴BE=DE,CF=DF,
    又∵BE=3,CF=4,
    ∴EF=DE+DF=BE+CF=7.
    故答案为:7.
    【点睛】
    本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    4、45°或135°
    【分析】
    根据题意,分两种情况讨论:①当为锐角三角形时;②当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.
    【详解】
    解:①如图所示:当为锐角三角形时,

    ∵,,
    ∴,
    ∴,,
    ∴,
    在ΔBDF与中,

    ∴ΔBDF≅ΔADC,
    ∴,
    ∵,
    ∴;
    ②如图所示:当为钝角三角形时,

    ∵,,
    ∴,
    ∴,,
    ∴,
    ∵,
    ∴,
    在ΔBDF与中,

    ∴ΔBDF≅ΔADC,
    ∴,
    ∵,
    ∴,

    综合①②可得:为或,
    故答案为:或.
    【点睛】
    题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.
    5、20
    【分析】
    题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
    【详解】
    解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;
    当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.
    故答案为:20.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
    三、解答题
    1、(1)见解析;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
    【分析】
    (1)利用SAS证明△ADC≌△BEC,即可证明AD=BE;
    (2)证明△CDE为等边三角形,可求得∠BDE=120°;利用全等三角形的性质可求得∠BFD=∠BCA=60°,推出∠DFE=120°;同理可推出∠BFC=∠AFC+∠BFD=120°.
    【详解】
    (1)证明:等边△ABC中,CA=CB,∠ACB=60°,
    ∵CE=CD,∠BCE=60°,
    ∴△ADC≌△BEC(SAS),
    ∴AD=BE;
    (2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
    ∵CE=CD,∠BCE=60°,
    ∴△CDE为等边三角形,
    ∴∠CDE=60°,
    ∴∠BDE=120°;
    ∵△ADC≌△BEC,
    ∴∠DAC=∠EBC,
    又∠BDF=∠ADC,
    ∴∠BFD=∠BCA=60°,
    ∴∠DFE=120°;
    同理可求得∠AFC=∠ABC=60°,
    ∴∠BFC=∠AFC+∠BFD=120°;

    综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.
    【点睛】
    本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
    2、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
    (2)由(1)即可用三线合一定理证明;
    (3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
    【详解】
    解:(1)如图所示,延长DE交AB延长线于F,
    ∵∠B=∠C=90°,
    ∴AB∥CD,
    ∴∠CDE=∠F,
    ∵DE平分∠ADC,
    ∴∠CDE=∠ADE,
    ∴∠ADF=∠F,
    ∴AD=AF,
    ∴△ADF是等腰三角形,
    ∵E是BC的中点,
    ∴CE=BE,
    ∴△CDE≌△BFE(AAS),
    ∴DE=FE,
    ∴E是DF的中点,
    ∴AE平分∠BAD;

    (2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
    ∴AE⊥DE;
    (3)∵△CDE≌△BFE,
    ∴CD=BF,
    ∴AD=AF=AB+BF=AB+CD.
    【点睛】
    本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    3、
    (1)
    (2)或,见解析
    【分析】
    (1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
    (2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
    (1)
    解:,,
    ∴∠B=∠ACB=45°,
    ∵,
    ∴,即∠BAD=∠CAE,
    ∵,,
    ∴△BAD≌△CAE,
    ∴∠ACE=∠B=45°,
    ∴∠BCE=∠ACB+∠ACE=90°,
    ∴;
    (2)
    解:如图,补全图形;


    证明:∵,
    ∴.
    又∵,,
    ∴≌.
    ∴,,.
    ∵,
    ∴.
    ∴.
    延长EF到点G,使.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴≌.
    ∴.
    ∵,
    ∴.
    如图,同理可证.

    【点睛】
    此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
    4、
    (1)证明见解析;
    (2)∠CDE=20°.
    【分析】
    (1)由“SAS”可证△ABC≌△DBE;
    (2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.
    (1)
    证明:∵∠ABD=∠CBE,
    ∴∠ABD+∠DBC=∠CBE+∠DBC,
    即:∠ABC=∠DBE,
    在△ABC和△DBE中,

    ∴△ABC≌△DBE(SAS);
    (2)
    解:由(1)可知:△ABC≌△DBE,
    ∴∠C=∠E,
    ∵∠DFB=∠C+∠CDE,
    ∠DFB=∠E+∠CBE,
    ∴∠CDE=∠CBE,
    ∵∠ABD=∠CBE=20°,
    ∴∠CDE=20°.
    【点睛】
    本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.
    5、(1)20°;(2);(3)AF= CF+BF,理由见解析
    【分析】
    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
    (2)同(1)求解即可;
    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
    ∴,
    ∴∠CBF=∠ABE-∠ABC=20°;
    (2)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,,AC=AE,
    ∴ ,AB=AE,
    ∴,
    ∴;
    (3)AF= CF+BF,理由如下:
    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
    ∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
    在△AEF和△ACF中,

    ∴△AEF≌△ACF(SAS),
    ∴∠AFE=∠AFC,
    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
    ∴∠BFD=∠ACD=60°,
    ∴∠AFE=∠AFC=60°,
    ∴∠BFC=120°,
    ∴∠BAC+∠BFC=180°,
    ∴∠ABF+∠ACF=180°,
    ∴∠ACG+∠ACF=180°,
    ∴F、C、G三点共线,
    ∴△AFG是等边三角形,
    ∴AF=GF=CF+CG=CF+BF.

    【点睛】
    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
    6、
    (1)△AMN是是等腰三角形;理由见解析;
    (2)①证明见解析;②a﹣b.
    【分析】
    (1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
    (2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
    ②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
    (1)
    解:△AMN是是等腰三角形,
    理由如下:
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴△AMN是等腰三角形;
    (2)
    ①证明:∵BP平分∠ABC,
    ∴∠PBM=∠PBC,
    ∵MN∥BC,
    ∴∠MPB=∠PBC
    ∴∠PBM=∠MPB,
    ∴MB=MP,
    ∴△BPM是等腰三角形;
    ②由①知MB=MP,
    同理可得:NC=NP,
    ∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
    ∵△ABC的周长为a,BC=b,
    ∴AB+AC+b=a,
    ∴AB+AC=a﹣b
    ∴△AMN的周长=a﹣b.
    【点睛】
    本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
    7、(1)见解析;(2)见解析;(3)2
    【分析】
    (1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
    (2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
    (3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
    【详解】
    解:(1)证明:过点B作于点Q,如图1





    又,
    ∴△


    ∴四边形是矩形


    (2)在GF上截取GH=GE,连接AH,如图2,











    (3)过点A作于点P,在FC上截取,连接,如图3,

    由(1)、(2)知,,





    ∴∠

    ∴∠


    ∴∠

    ∴AC是EH的垂直平分线,


    又∵

    ∴∠
    ∴∠
    ∵∠,
    ∴∠




    ∵∠
    ∴,即

    ∵,即

    在和中,
    AH=AM∠HAB=∠MADAB=AD
    ∴△




    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    8、(1)见解析;(2)见解析;(3)∠DAB=150°,见解析
    【分析】
    (1)依据题意作出相应图形即可;
    (2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,∠ACB=60°
    由同角的补角相等得∠CAO=∠CBE,由SAS证得△CAO和△CBE全等,即可得证;
    (3)由∠DAB=150°, DA=AB,得∠ADB=∠ABD=15°,由等边三角形性质,可得∠CAB=∠CBA=∠ACB =60°,故∠CAD=150°,由等边对等角得∠ADC=∠ACD=15°,由此∠DBC=∠DCB=75°,由等角对等边得DB=DC 再由∠POQ=120°,∠BDC=30°,得∠DFO=90°,等量代换即可得证.
    【详解】
    解:(1)如图所示:

    (2)证明如下:
    在BQ上截取BE=AO,连接CE,

    ∵△ABC为等边三角形,
    ∴CA=CB,∠ACB=60°
    ∵∠POQ=120°,
    ∴∠CAO+∠CBO=180°
    ∵∠CBO+∠CBE=180°,
    ∴∠CAO=∠CBE,
    在△CAO和△CBE中,,
    ∴△CAO≌△CBE(SAS),
    ∴CO=CE,∠COA=∠CEB,
    ∴∠COE=∠CEB,
    ∴∠COP=∠COQ;
    (3)∠DAB=150°,
    如图:

    ∵∠DAB=150°, DA=AB,
    ∴∠ADB=∠ABD=15°
    ∵△ABC为等边三角形,
    ∴∠CAB=∠CBA=∠ACB =60°,
    ∴∠CAD=150°,
    ∵AD=AC,
    ∴∠ADC=∠ACD=15°,
    ∴∠DBC=∠DCB=75°,
    ∴DB=DC,
    ∵∠POQ=120°,∠BDC=30°,
    ∴∠DFO=90°
    ∵AD=AC,
    ∴DF=FC
    ∴DO=OC
    ∵DB=DO+OB,
    ∴DB=CO+OB,
    ∴CD= OB + OC.
    【点睛】
    此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.
    9、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析
    【分析】
    (1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;
    ②延长AO至点E,根据三角形外角性质解答即可;
    (2)根据三角形外角性质和三角形内角和定理解答即可.
    【详解】
    证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO,
    ∴∠BOC>∠A;

    ②∠BOC与∠BAC的数量关系:∠BOC=2∠A;
    证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠C,
    ∵OA=OB=OC,
    ∴∠BAO=∠B,∠CAO=∠C,
    ∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC;

    (2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC;
    证明:如图所示,设∠B=x,

    ∵OA=OB=OC,
    ∴∠B=∠BAO=x,∠C=∠OAC=∠BAC+x;
    在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAE;
    即x+∠BOC=∠CAE+x+∠CAE=2∠BAC+x;
    即∠BOC=2∠BAC.
    【点睛】
    此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.
    10、见解析
    【分析】
    由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明.
    【详解】
    解:,
    为等腰三角形,

    由外角的性质得:,

    再由外角的性质得:,


    【点睛】
    本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.

    相关试卷

    数学沪教版 (五四制)第十四章 三角形综合与测试课后测评: 这是一份数学沪教版 (五四制)第十四章 三角形综合与测试课后测评,共30页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。

    2021学年第十四章 三角形综合与测试同步训练题: 这是一份2021学年第十四章 三角形综合与测试同步训练题,共39页。试卷主要包含了尺规作图等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共29页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map