终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析沪教版七年级数学第二学期第十四章三角形重点解析试题(含详解)

    立即下载
    加入资料篮
    2022年必考点解析沪教版七年级数学第二学期第十四章三角形重点解析试题(含详解)第1页
    2022年必考点解析沪教版七年级数学第二学期第十四章三角形重点解析试题(含详解)第2页
    2022年必考点解析沪教版七年级数学第二学期第十四章三角形重点解析试题(含详解)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    七年级下册第十四章 三角形综合与测试练习

    展开

    这是一份七年级下册第十四章 三角形综合与测试练习,共32页。试卷主要包含了如图,直线l1l2,被直线l3,如图,点D,如图,AB=AC,点D等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形重点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )

    A.两点确定一条直线
    B.两点之间,线段最短
    C.三角形具有稳定性
    D.三角形的任意两边之和大于第三边
    2、如图,,于点,与交于点,若,则等于( )

    A.20° B.50° C.70° D.110°
    3、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是(  )

    A.95° B.90° C.85° D.80°
    4、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) .

    A.40° B.50° C.70° D.100
    5、在△ABC中,∠A=∠B=∠C,则∠C=(  )
    A.70° B.80° C.100° D.120°
    6、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于(  )

    A.56° B.34° C.44° D.46°
    7、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )

    A.42° B.48° C.52° D.58°
    8、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )

    A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC
    9、如图,已知,要使,添加的条件不正确的是( )

    A. B. C. D.
    10、若一个三角形的三个外角之比为3:4:5,则该三角形为(  )
    A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.

    2、如图,正三角形ABC中,D是AB的中点,于点E,过点E作与BC交于点F.若,则的周长为______.

    3、如图,已知△ABC是等边三角形,边长为3,G是三角形的重心,那么GA =______.

    4、等腰三角形的两边长分别是和,则它的周长为________.
    5、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是 _____.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,点D在AC上,BC,DE交于点F,,,.

    (1)求证:;
    (2)若,求∠CDE的度数.
    2、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.

    3、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.

    4、阅读下面材料:活动1利用折纸作角平分线
    ①画图:在透明纸片上画出(如图1-①);②折纸:让的两边QP与QR重合,得到折痕QH(如图1-②);③获得结论:展开纸片,QH就是的平分线(如图1-③).

    活动2利用折纸求角
    如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F.将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M.这时的度数可知,而且图中存在互余或者互补的角.
    解答问题:(1)求的度数;
    (2)①图2中,用数字所表示的角,哪些与互为余角?
    ②写出的一个补角.
    解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , .由题意可知,是平角.所以(∠ +∠ )= °.
    (2)①图2中,用数字所表示的角,所有与互余的角是: ;
    ②的一个补角是 .

    5、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
    (1)求证DOB≌AOC;
    (2)求∠CEB的大小;
    (3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.

    6、如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.
    (1)求AE的长度;
    (2)求∠AED的度数.

    7、在四边形ABCD中,,点E在直线AB上,且.
    (1)如图1,若,,,求AB的长;
    (2)如图2,若DE交BC于点F,,求证:.

    8、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.

    9、如图,E为AB上一点,BD∥AC,AB=BD,AC=BE.求证:BC=DE.

    10、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据三角形具有稳定性进行求解即可.
    【详解】
    解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
    故选C.
    【点睛】
    本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
    2、C
    【分析】
    由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴.
    故选:C.
    【点睛】
    题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.
    3、C
    【分析】
    根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.
    【详解】
    解:在△ABE和△ACD中,

    ∴△ABE≌△ACD(SAS),
    ∴∠C=∠B,
    ∵∠B=25°,
    ∴∠C=25°,
    ∵∠A=60°,
    ∴∠BDC=∠A+∠C=85°,
    故选C.
    【点睛】
    本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
    4、C
    【分析】
    根据旋转的性质,可得 , ,从而得到,即可求解.
    【详解】
    解:∵绕点A按逆时针方向旋转40°后与重合,
    ∴ , ,
    ∴.
    故选:C
    【点睛】
    本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键.
    5、D
    【分析】
    根据三角形的内角和,①,进而根据已知条件,将代入①即可求得
    【详解】
    解:∵在△ABC中,,∠A=∠B=∠C,

    解得
    故选D
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    6、C
    【分析】
    依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
    【详解】
    解:如图:

    ∵l1∥l2,∠1=46°,
    ∴∠3=∠1=46°,
    又∵l3⊥l4,
    ∴∠2=90°﹣46°=44°,
    故选:C.
    【点睛】
    本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
    7、B
    【分析】
    根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    ∴,
    故选:B.
    【点睛】
    题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
    8、C
    【分析】
    根据全等三角形的判定定理进行判断即可.
    【详解】
    解:根据题意可知:AB=AC,,
    若,则根据可以证明△ABE≌△ACD,故A不符合题意;
    若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;
    若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;
    若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;
    故选:C.
    【点睛】
    本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.
    9、D
    【分析】
    已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.
    【详解】
    解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;
    B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;
    C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;
    D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;
    故选:D.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键.
    10、A
    【分析】
    根据三角形外角和为360°计算,求出内角的度数,判断即可.
    【详解】
    解:设三角形的三个外角的度数分别为3x、4x、5x,
    则3x+4x+5x=360°,
    解得,x=30°,
    ∴三角形的三个外角的度数分别为90°、120°、150°,
    对应的三个内角的度数分别为90°、60°、30°,
    ∴此三角形为直角三角形,
    故选:A.
    【点睛】
    本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
    二、填空题
    1、E
    【分析】
    到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
    【详解】
    如图所示,连接BD、AC、GA、GB、GC、GD,
    ∵,,
    ∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
    根据图形可知,对角线交点为E,
    故答案为:E.

    【点睛】
    本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
    2、18
    【分析】
    利用正三角形ABC以及平行关系,求出是等边三角形,在中,利用含角的直角三角形的性质,求出的长,进而得到长,最后即可求出的周长.
    【详解】
    解:是等边三角形,
    ,,


    为等边三角形,

    由于D是AB的中点,故,


    在中,,



    故答案为:18.
    【点睛】
    本题主要是考查了等边三角形的判定及性质、含角的直角三角形的性质,熟练地综合应用等边三角形和含角的直角三角形的性质求解边长,是解决该题的关键.
    3、
    【分析】
    延长AG交BC于D,根据重心的概念得到AD⊥BC,BD=DC=BC=,根据勾股定理求出AD,根据重心的概念计算即可.
    【详解】
    解:延长AG交BC于D,
    ∵G是三角形的重心,
    ∴AD⊥BC,BD=DC=BC=,
    由勾股定理得,AD=,
    ∴GA=AD=,

    故答案为:.
    【点睛】
    本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
    4、22
    【分析】
    分两种情况讨论:当腰长为时, 当腰长为时,再结合三角形的三边关系,从而可得答案.
    【详解】
    解: 等腰三角形的两边长分别是和,
    当腰长为时,此时 不符合题意,舍去,
    当腰长为时,此时 符合题意,
    所以三角形的周长为:
    故答案为:
    【点睛】
    本题考查的是等腰三角形的定义,三角形的三边关系,掌握“等腰三角形的两腰相等,再分情况讨论”是解本题的关键.
    5、##
    【分析】
    先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.
    【详解】
    解:在和中,,


    则的面积是,
    故答案为:.
    【点睛】
    本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.
    三、解答题
    1、
    (1)证明见解析;
    (2)∠CDE=20°.
    【分析】
    (1)由“SAS”可证△ABC≌△DBE;
    (2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.
    (1)
    证明:∵∠ABD=∠CBE,
    ∴∠ABD+∠DBC=∠CBE+∠DBC,
    即:∠ABC=∠DBE,
    在△ABC和△DBE中,

    ∴△ABC≌△DBE(SAS);
    (2)
    解:由(1)可知:△ABC≌△DBE,
    ∴∠C=∠E,
    ∵∠DFB=∠C+∠CDE,
    ∠DFB=∠E+∠CBE,
    ∴∠CDE=∠CBE,
    ∵∠ABD=∠CBE=20°,
    ∴∠CDE=20°.
    【点睛】
    本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.
    2、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:

    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .

    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;

    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;

    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
    3、见解析
    【分析】
    根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.
    【详解】
    解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,
    ∴∠BAD=∠CAD,
    ∵DE∥AB,
    ∴∠ADE=∠BAD,
    ∴∠ADE=∠CAD,
    ∴AE=ED,
    ∴△AED是等腰三角形.
    【点睛】
    本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.
    4、(1),,,90;(2)①∠1、∠2;②∠CME或∠NEB.
    【分析】

    【详解】
    解:(1)∵折叠
    ∴EN是的平分线,EM是的平分线,
    ∴∠NEA=∠NEA′=,∠BEM=∠B′EM=,
    ∵是平角.
    ∴∠NEM=∠NEA′+∠B′EM==+,
    故答案为:,,,90;

    (2)①∵∠1=∠2,∠A′EN=∠3,∠NEM=90°,
    ∴∠A′EN+∠1=∠NEM=90°,
    ∴互为余角为∠1和∠2,
    故答案为:∠1、∠2;
    ②∵∠A′EN=∠3,∠3+∠NEB=180°,
    ∴∠A′EN的补角为∠NEB.
    ∵∠B=90°,
    ∴∠2+∠EMB=90°,
    ∴∠3=∠EMB,
    ∵∠CME+∠EMB=180°,
    ∴∠3+∠CME=180°,
    ∴∠A′EN的补角为∠CME,
    ∴∠A′EN的补角为∠CME或∠NEB.
    故答案为∠CME或∠NEB.
    【点睛】
    本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.
    5、(1)见详解;(2)120°;(2)120°.
    【分析】
    (1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
    (2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
    (3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
    【详解】
    (1)证明:如图1,

    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠BOD=∠AOC=120°,
    在△AOC和△BOD中

    ∴△AOC≌△BOD;
    (2)解:∵△AOC≌△BOD,
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    (3)解:如图2,

    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
    在△AOC和△BOD中

    ∴△AOC≌△BOD;
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    即∠CEB的大小不变.
    【点睛】
    本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
    6、(1);(2).
    【分析】
    (1)先根据全等三角形的性质可得,再根据线段的和差即可得;
    (2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.
    【详解】
    解:(1)∵,
    ∴,
    ∵,
    ∴;
    (2)∵,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.
    7、(1)5;(2)证明见解析
    【分析】
    (1)推出∠ADE=∠BEC,根据AAS证△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;
    (2)推出∠A=∠EBC,∠AED=∠BCE,根据AAS证△AED≌△BCE,推出AD=BE,AE=BC,即可得出结论.
    【详解】
    (1)解:∵∠DEC=∠A=90°,
    ∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,
    ∴∠ADE=∠BEC,
    ∵,∠A=90°,
    ∴∠B+∠A=180°,
    ∴∠B=∠A=90°,
    在△AED和△CEB中

    ∴△AED≌△BCE(AAS),
    ∴AE=BC=3,BE=AD=2,
    ∴AB=AE+BE=2+3=5.
    (2)证明:∵,
    ∴∠A=∠EBC,
    ∵∠DFC=∠AEC,
    ∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,
    ∴∠AED=∠BCE,
    在△AED和△BCE中

    ∴△AED≌△BCE(AAS),
    ∴AD=BE,AE=BC,
    ∵BC=AE=AB+BE=AB+AD,
    即AB+AD=BC.
    【点睛】
    本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用证明两个三角形全等”是解本题的关键.
    8、答案见解析
    【分析】
    AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
    【详解】
    解:如图,
    ……
    [答案不唯一]
    【点睛】
    本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
    9、见解析
    【分析】
    根据平行线的性质可得,利用全等三角形的判定定理即可证明.
    【详解】
    证明:∵,
    ∴.
    在和中,

    ∴,
    ∴.
    【点睛】
    题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键.
    10、∠AFB=40°.
    【分析】
    由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
    【详解】
    解:∵AD⊥BE,
    ∴∠ADC=90°,
    ∵∠DAC=10°,
    ∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
    ∵AE是∠MAC的平分线,BF平分∠ABC,
    ∴,
    又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
    ∴∠AFB=∠MAE﹣∠ABF=.
    【点睛】
    本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共30页。试卷主要包含了如图,AB=AC,点D,如图,ABC≌DEF,点B等内容,欢迎下载使用。

    数学七年级下册第十四章 三角形综合与测试同步达标检测题:

    这是一份数学七年级下册第十四章 三角形综合与测试同步达标检测题,共28页。试卷主要包含了若一个三角形的三个外角之比为3,如图,ABC≌DEF,点B等内容,欢迎下载使用。

    初中数学第十四章 三角形综合与测试综合训练题:

    这是一份初中数学第十四章 三角形综合与测试综合训练题,共37页。试卷主要包含了定理等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map