终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度沪教版七年级数学第二学期第十四章三角形专题训练试卷(精选含详解)

    立即下载
    加入资料篮
    2021-2022学年度沪教版七年级数学第二学期第十四章三角形专题训练试卷(精选含详解)第1页
    2021-2022学年度沪教版七年级数学第二学期第十四章三角形专题训练试卷(精选含详解)第2页
    2021-2022学年度沪教版七年级数学第二学期第十四章三角形专题训练试卷(精选含详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题,共31页。试卷主要包含了如图,为估计池塘岸边A等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形专题训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在△ABC中,∠A=∠B=∠C,则∠C=(  )
    A.70° B.80° C.100° D.120°
    2、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).

    A.45° B.60° C.35° D.40°
    3、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )

    A.10° B.20° C.30° D.50°
    4、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是(  )

    A.5米 B.10米 C.15米 D.20米
    5、如图,在和中,,,,,连接,交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( )

    A.1个 B.2个 C.3个 D.4个
    6、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )

    A.30° B.40° C.50° D.60°
    7、如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是( )

    A.ÐB=ÐC B.AD⊥BC C.ÐBAD=ÐCAD D.AB=2BC
    8、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为(  )

    A.21 B.24 C.27 D.30
    9、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )

    A. B. C. D.
    10、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC=5,则五边形DECHF的周长为(  )

    A.8 B.10 C.11 D.12
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,两根旗杆CA,DB相距20米,且CA⊥AB,DB⊥AB,某人从旗杆DB的底部B点沿BA走向旗杆CA底部A点.一段时间后到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角∠CMD=90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为每秒2米,则这个人从点B到点M所用时间是 _____秒.

    2、如图,直线ED把分成一个和四边形BDEC,的周长一定大于四边形BDEC的周长,依据的原理是____________________________________.

    3、如图,线段AC与BD相交于点O,∠A=∠D=90°,要证明△ABC≌△DCB,还需添加的一个条件是____________.(只需填一个条件即可)

    4、如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为_______________.

    5、在中,若,则_______.
    三、解答题(10小题,每小题5分,共计50分)
    1、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
    (1)求证:AB//CD;
    (2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
    (3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.

    2、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.

    3、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.

    4、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.

    5、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.

    6、如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠2

    7、如图,AD是的高,CE是的角平分线.若,,求的度数.

    8、如图,在中,,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F.

    (1)求证:;
    (2)若,,则______度.
    9、阅读填空,将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP与∠ACP是否存在某种数量关系.

    (1)特例探索:
    若∠A=50°,则∠PBC+∠PCB= 度,∠ABP+∠ACP= 度.
    (2)类比探索:
    ∠ABP、∠ACP、∠A的关系是 .
    (3)变式探索:
    如图②所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是 .
    10、阅读下面材料:活动1利用折纸作角平分线
    ①画图:在透明纸片上画出(如图1-①);②折纸:让的两边QP与QR重合,得到折痕QH(如图1-②);③获得结论:展开纸片,QH就是的平分线(如图1-③).

    活动2利用折纸求角
    如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F.将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M.这时的度数可知,而且图中存在互余或者互补的角.
    解答问题:(1)求的度数;
    (2)①图2中,用数字所表示的角,哪些与互为余角?
    ②写出的一个补角.
    解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , .由题意可知,是平角.所以(∠ +∠ )= °.
    (2)①图2中,用数字所表示的角,所有与互余的角是: ;
    ②的一个补角是 .


    -参考答案-
    一、单选题
    1、D
    【分析】
    根据三角形的内角和,①,进而根据已知条件,将代入①即可求得
    【详解】
    解:∵在△ABC中,,∠A=∠B=∠C,

    解得
    故选D
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    2、A
    【分析】
    由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
    【详解】
    解:由折叠得∠B=∠BCD,
    ∵∠A+∠B+∠ACB=180°,,,
    ∴65°+2∠B+25°=180°,
    ∴∠B=45°,
    故选:A.
    【点睛】
    此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
    3、B
    【分析】
    由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
    【详解】
    解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
    ∴∠ABD=∠BDC−∠A=50°−30°=20°,
    ∵BD是△ABC的角平分线,
    ∴∠DBC=∠ABD=20°,
    ∵DE∥BC,
    ∴∠EDB=∠DBC=20°,
    故选:B.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
    4、A
    【分析】
    根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.
    【详解】
    解:连接AB,

    根据三角形的三边关系定理得:
    15﹣10<AB<15+10,
    即:5<AB<25,
    ∴A、B间的距离在5和25之间,
    ∴A、B间的距离不可能是5米;
    故选:A.
    【点睛】
    本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.
    5、C
    【分析】
    由全等三角形的判定及性质对每个结论推理论证即可.
    【详解】



    又∵,


    故①正确


    由三角形外角的性质有


    故②正确
    作于,于,如图所示:

    则°,
    在和中,,
    ∴,
    ∴,
    在和中,
    ∴,

    ∴平分
    故④正确
    假设平分




    由④知
    又∵为对顶角



    ∴在和中,

    即AB=AC
    又∵
    故假设不符,故不平分
    故③错误.
    综上所述①②④正确,共有3个正确.
    故选:C.
    【点睛】
    本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.
    6、A
    【分析】
    根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
    【详解】
    ∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
    ∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
    ∵∠PCM是△BCP的外角,
    ∴∠P=∠PCM−∠CBP=50°−20°=30°,
    故选:A.
    【点睛】
    本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
    7、D
    【分析】
    根据等腰三角形的等边对等角的性质及三线合一的性质判断.
    【详解】
    解:∵AB=AC,点D是BC边中点,
    ∴ÐB=ÐC,AD⊥BC,ÐBAD=ÐCAD,
    故选:D.
    【点睛】
    此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.
    8、C
    【分析】
    根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.
    【详解】
    解:如图,在AB上截取BE=BC,连接DE,

    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    在△CBD和△EBD中,

    ∴△CBD≌△EBD(SAS),
    ∴∠CDB=∠BDE,∠C=∠DEB,
    ∵∠C=2∠CDB,
    ∴∠CDE=∠DEB,
    ∴∠ADE=∠AED,
    ∴AD=AE,
    ∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,
    故选:C.
    【点睛】
    本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.
    9、A
    【分析】
    根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
    【详解】
    解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,





    故选A
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    10、B
    【分析】
    证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.
    【详解】
    解:∵△GFH为等边三角形,
    ∴FH=GH,∠FHG=60°,
    ∴∠AHF+∠GHC=120°,
    ∵△ABC为等边三角形,
    ∴AB=BC=AC=5,∠ACB=∠A=60°,
    ∵∠AHF=180°-∠FHG-∠GHC =120°-∠GHC,
    ∠HGC=180°-∠C-∠GHC =120°-∠GHC,
    ∴∠AHF=∠HGC,
    在△AFH和△CHG中

    ∴△AFH≌△CHG(AAS),
    ∴AF=CH.
    ∵△BDE和△FGH是两个全等的等边三角形,
    ∴BE=FH,
    ∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
    =(BD+DF+AF)+(CE+BE),
    =AB+BC=10.
    故选:B.
    【点睛】
    本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.
    二、填空题
    1、4
    【分析】
    先说明,再利用证明,然后根据全等三角形的性质可得米,再根据线段的和差求得BM的长,最后利用时间=路程÷速度计算即可.
    【详解】
    解:∵,
    ∴,
    又∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴米,
    (米),
    ∵该人的运动速度,
    他到达点M时,运动时间为s.
    故答案为:4.
    【点睛】
    本题主要考查了全等三角形的判定与性质,根据题意证得是解答本题的关键.
    2、三角形两边之和大于第三边
    【分析】
    表示出和四边形BDEC的周长,再结合中的三边关系比较即可.
    【详解】
    解:的周长=
    四边形BDEC的周长=
    ∵在中

    即的周长一定大于四边形BDEC的周长,
    ∴依据是:三角形两边之和大于第三边;
    故答案为三角形两边之和大于第三边
    【点睛】
    本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.
    3、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB
    【分析】
    根据全等三角形的判定条件求解即可.
    【详解】
    解:∵∠A=∠D=90°,BC=CB,
    ∴只需要添加:AC=DB或AB=DC,即可利用HL证明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS证明△ABC≌△DCB,
    故答案为:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.
    【点睛】
    本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
    4、6
    【分析】
    要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.
    【详解】
    解:作点E关于AD的对称点F,连接CF,

    ∵△ABC是等边三角形,AD是BC边上的中垂线,
    ∴点E关于AD的对应点为点F,
    ∴CF就是EP+CP的最小值.
    ∵△ABC是等边三角形,E是AC边的中点,
    ∴F是AB的中点,
    ∴CF=AD=6,
    即EP+CP的最小值为6,
    故答案为6.
    【点睛】
    本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.
    5、65°65度
    【分析】
    由三角形的内角和定理,得到,即可得到答案;
    【详解】
    解:在中,,
    ∵,
    ∴,
    ∴;
    故答案为:65°.
    【点睛】
    本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.
    三、解答题
    1、(1)见解析;(2)见解析;(3)108°
    【分析】
    (1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
    (2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
    (3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
    【详解】
    证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
    ∴∠AEG=∠C
    ∴AB//CD
    (2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
    ∴∠DGC+∠AHF=180°
    ∴EC//BF
    ∴∠B=∠AEG
    由(1)得∠AEG=∠C
    ∴∠B=∠C
    (3)由(2)得EC//BF
    ∴∠BFC+∠C=180°
    ∵∠BFC=4∠C
    ∴∠C=36°
    ∴∠DGC=36°
    ∵∠C+∠DGC+∠D=180°
    ∴∠D=108°
    【点睛】
    此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
    2、见解析
    【分析】
    证明△BAC≌△BDC即可得出结论.
    【详解】
    解:∵BC平分∠ABD,
    ∴∠ABC=∠DBC,
    在△BAC和△BDC中,
    ∴△BAC≌△BDC,
    ∴AC=DC.
    【点睛】
    本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.
    3、85°
    【分析】
    由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
    【详解】
    解:∵AD是BC边上的高,
    ∴∠ADB=∠ADC=90.
    在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
    ∵CE平分∠ACB,
    ∴∠ECB=∠ACB=35°.
    ∵∠AEC是△BEC的外角,,
    ∴∠AEC=∠B+∠ECB=50°+35°=85°.
    答:∠AEC的度数是85°.
    【点睛】
    本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.
    4、答案见解析
    【分析】
    AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
    【详解】
    解:如图,
    ……
    [答案不唯一]
    【点睛】
    本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
    5、见解析
    【分析】
    根据等腰三角形的性质,可得∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,从而得到△BDE≌△CDE,进而得到∠DCE=∠DBE,再由BE平分∠ABC,可得 ,进而得到,即可求证.
    【详解】
    解:∵AB=AC,AD是△ABC的中线,
    ∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,
    ∵DE=DE,
    ∴△BDE≌△CDE,
    ∴∠DCE=∠DBE,
    ∵BE平分∠ABC,
    ∴ ,
    ∴,
    ∴,
    ∴CE平分∠ACB.
    【点睛】
    本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.
    6、见详解.
    【分析】
    根据等腰三角形三合一性质以及等边对等角性质得出AD⊥BC,∠B=∠C,根据AF⊥AD,利用在同一平面内垂直同一直线的两直线平行得出AF∥BC,利用平行线性质得出∠1=∠B,∠2=∠C即可.
    【详解】
    证明:∵△ABC中,AB=AC,D为BC边的中点,
    ∴AD⊥BC,∠B=∠C,
    ∵AF⊥AD,
    ∴AF∥BC,
    ∴∠1=∠B,∠2=∠C,
    ∴∠1=∠2.
    【点睛】
    本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键.
    7、
    【分析】
    AD是的高,有;由知;CE是的角平分线可得;,;在中,.
    【详解】
    解:∵AD是的高



    ∵CE是的角平分线



    ∴在中,.
    【点睛】
    本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
    8、(1)见解析,(2)46
    【分析】
    (1)根据等腰三角形的性质和角平分线得到∠B=∠ACB=∠BCF,由AD是角平分线,得到BD=CD,证△BDE≌△CDF即可;
    (2)根据全等三角形的性质得到DE=DF=DA,根据求得∠DAB,进而求出∠B的度数即可.
    【详解】
    (1)证明:∵,
    ∴∠B=∠ACB,
    ∵CB是的平分线,
    ∴∠ACB=∠BCF,
    ∴∠B=∠BCF,
    ∵AD是角平分线,AB=AC,
    ∴BD=CD,
    ∵∠BDE=∠CDF,
    ∴△BDE≌△CDF(AAS);
    ∴;
    (2)∵△BDE≌△CDF;
    ∴ED=FD,
    ∵,
    ∴ED=AD,
    ∵,
    ∴,
    ∴,
    ∴∠B=∠ACB=∠BCF=23°,
    ∴,
    故答案为:46.
    【点睛】
    本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.
    9、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP-∠ABP=90°.
    【分析】
    (1)由三角形内角和为180°计算和中的角的关系即可.
    (2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.
    (3)由三角形外角的性质即可推出∠A+∠ACP-∠ABP=90°.
    【详解】
    (1)在中
    ∵∠MPN=90°
    ∴∠PBC+∠PCB=180°-∠MPN=180°-90°=90°
    在中
    ∵∠A+∠ABC+∠ACB=180°
    又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP
    ∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
    ∵∠PBC+∠PCB=90°,∠A=50°
    ∴∠ABP +∠ACP=180°-90°-50°=40°
    (2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
    又∵∠PBC+∠PCB=90°
    ∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°
    (3)如图所示,设PN与AB交于点H
    ∵∠A+∠ACP=∠AHP
    又∵∠ABP+∠MPN =∠AHP
    ∴∠A+∠ACP=∠ABP+∠MPN
    又∵∠MPN =90°
    ∴∠A+∠ACP =90°+∠ABP
    ∴∠A+∠ACP-∠ABP=90°.

    【点睛】
    本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.
    10、(1),,,90;(2)①∠1、∠2;②∠CME或∠NEB.
    【分析】

    【详解】
    解:(1)∵折叠
    ∴EN是的平分线,EM是的平分线,
    ∴∠NEA=∠NEA′=,∠BEM=∠B′EM=,
    ∵是平角.
    ∴∠NEM=∠NEA′+∠B′EM==+,
    故答案为:,,,90;

    (2)①∵∠1=∠2,∠A′EN=∠3,∠NEM=90°,
    ∴∠A′EN+∠1=∠NEM=90°,
    ∴互为余角为∠1和∠2,
    故答案为:∠1、∠2;
    ②∵∠A′EN=∠3,∠3+∠NEB=180°,
    ∴∠A′EN的补角为∠NEB.
    ∵∠B=90°,
    ∴∠2+∠EMB=90°,
    ∴∠3=∠EMB,
    ∵∠CME+∠EMB=180°,
    ∴∠3+∠CME=180°,
    ∴∠A′EN的补角为∠CME,
    ∴∠A′EN的补角为∠CME或∠NEB.
    故答案为∠CME或∠NEB.
    【点睛】
    本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.

    相关试卷

    数学七年级下册第十四章 三角形综合与测试同步练习题:

    这是一份数学七年级下册第十四章 三角形综合与测试同步练习题,共31页。试卷主要包含了如图,点A,下列命题是真命题的是,如图,点D,若一个三角形的三个外角之比为3等内容,欢迎下载使用。

    2020-2021学年第十四章 三角形综合与测试同步训练题:

    这是一份2020-2021学年第十四章 三角形综合与测试同步训练题,共32页。试卷主要包含了下列四个命题是真命题的有,如图,ABC≌DEF,点B,下列三个说法,下列说法不正确的是等内容,欢迎下载使用。

    初中数学第十四章 三角形综合与测试巩固练习:

    这是一份初中数学第十四章 三角形综合与测试巩固练习,共33页。试卷主要包含了若一个三角形的三个外角之比为3等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map