![2021-2022学年度沪教版七年级数学第二学期第十四章三角形月考练习题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12708432/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪教版七年级数学第二学期第十四章三角形月考练习题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12708432/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪教版七年级数学第二学期第十四章三角形月考练习题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12708432/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题
展开
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共31页。
沪教版七年级数学第二学期第十四章三角形月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC=5,则五边形DECHF的周长为( )
A.8 B.10 C.11 D.12
2、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )
A.30° B.40° C.50° D.60°
3、如图,是等边三角形,点在边上,,则的度数为( ).
A.25° B.60° C.90° D.100°
4、如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是( )
A.ÐB=ÐC B.AD⊥BC C.ÐBAD=ÐCAD D.AB=2BC
5、如图,已知,要使,添加的条件不正确的是( )
A. B. C. D.
6、等腰三角形的一个顶角是80°,则它的底角是( ).
A.40° B.50° C.60° D.70°
7、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
A.SSS B.SAS C.ASA D.AAS
8、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )
A.12 B.10 C.8 D.6
9、如图,在中,AD是角平分线,且,若,则的度数是( )
A.45° B.50° C.52° D.58°
10、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是( )
A.3 B.4 C.5 D.6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、△ABC的高AD所在直线与高BE所在直线相交于点F且DF=CD,则∠ABC=______.
2、两角和它们的夹边分别相等的两个三角形全等(可以简写成 _____).
3、如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为_______________.
4、如图,在中,,交BC的延长线于点E,若,点C是BE中点,则______°.
5、如图,四边形中,,连接,平分,E是直线上一点,,,则的长为________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
2、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.
3、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
(1)△AMN是否是等腰三角形?说明理由;
(2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
①求证:△BPM是等腰三角形;
②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).
4、如图,点A,B,C,D在一条直线上,,,.求证:.
5、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.
6、已知:如图,∠ABC=∠DCB,∠1=∠2.求证AB=DC.
7、如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.
8、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
(1)依题意补全图形,并直接写出∠AEB的度数;
(2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
请根据上述分析过程,完成解答过程.
9、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:AD∥CE.
10、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.
(1)若∠BAC=40°,求∠E的度数;
(2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.
-参考答案-
一、单选题
1、B
【分析】
证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.
【详解】
解:∵△GFH为等边三角形,
∴FH=GH,∠FHG=60°,
∴∠AHF+∠GHC=120°,
∵△ABC为等边三角形,
∴AB=BC=AC=5,∠ACB=∠A=60°,
∵∠AHF=180°-∠FHG-∠GHC =120°-∠GHC,
∠HGC=180°-∠C-∠GHC =120°-∠GHC,
∴∠AHF=∠HGC,
在△AFH和△CHG中
,
∴△AFH≌△CHG(AAS),
∴AF=CH.
∵△BDE和△FGH是两个全等的等边三角形,
∴BE=FH,
∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
=(BD+DF+AF)+(CE+BE),
=AB+BC=10.
故选:B.
【点睛】
本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.
2、A
【分析】
根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
【详解】
∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
∵∠PCM是△BCP的外角,
∴∠P=∠PCM−∠CBP=50°−20°=30°,
故选:A.
【点睛】
本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
3、D
【分析】
由等边三角形的性质及三角形外角定理即可求得结果.
【详解】
∵是等边三角形
∴∠C=60°
∴∠ADB=∠DBC+∠C=40°+60°=100°
故选:D
【点睛】
本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.
4、D
【分析】
根据等腰三角形的等边对等角的性质及三线合一的性质判断.
【详解】
解:∵AB=AC,点D是BC边中点,
∴ÐB=ÐC,AD⊥BC,ÐBAD=ÐCAD,
故选:D.
【点睛】
此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.
5、D
【分析】
已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.
【详解】
解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;
B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;
C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;
D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;
故选:D.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键.
6、B
【分析】
依据三角形的内角和是180°以及等腰三角形的性质即可解答.
【详解】
解:(180°-80°)÷2
=100°÷2
=50°;
答:底角为50°.
故选:B.
【点睛】
本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
7、A
【分析】
根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
【详解】
解:三根木条即为三角形的三边长,
即为利用确定三角形,
故选:A.
【点睛】
题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
8、A
【分析】
利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.
【详解】
解:由题意可知:∠ABE=∠AED=∠ECD=90°,
,,
,
在和中,
,
,
,
故选:A.
【点睛】
本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.
9、A
【分析】
根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.
【详解】
解:∵AD是角平分线,,
∴∠DCA==30°,
∵AD=AC,
∴∠C=(180°-∠DCA)÷2=75°,
∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,
故选:A.
【点睛】
本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.
10、A
【分析】
根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
【详解】
解:如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
故共有3个点,
故选:A.
【点睛】
本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
二、填空题
1、45°或135°
【分析】
根据题意,分两种情况讨论:①当为锐角三角形时;②当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.
【详解】
解:①如图所示:当为锐角三角形时,
∵,,
∴,
∴,,
∴,
在ΔBDF与中,
,
∴ΔBDF≅ΔADC,
∴,
∵,
∴;
②如图所示:当为钝角三角形时,
∵,,
∴,
∴,,
∴,
∵,
∴,
在ΔBDF与中,
,
∴ΔBDF≅ΔADC,
∴,
∵,
∴,
,
综合①②可得:为或,
故答案为:或.
【点睛】
题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.
2、角边角或
【分析】
根据全等三角形的判定定理得出即可.
【详解】
解答:解:两角和它们的夹边分别相等的两个三角形全等,简写成角边角或ASA,
故答案为:角边角或ASA.
【点睛】
本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.
3、6
【分析】
要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.
【详解】
解:作点E关于AD的对称点F,连接CF,
∵△ABC是等边三角形,AD是BC边上的中垂线,
∴点E关于AD的对应点为点F,
∴CF就是EP+CP的最小值.
∵△ABC是等边三角形,E是AC边的中点,
∴F是AB的中点,
∴CF=AD=6,
即EP+CP的最小值为6,
故答案为6.
【点睛】
本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.
4、67.5°
【分析】
连接AE,先得出∠BAC=∠BAE,再根据,得出∠BAC=22.5°,最后得出结果.
【详解】
解:连接AE,
∵点C是BE中点,
∴BC=CE,
∵∠ACB=90°,
∴AC⊥BE,
∴AB=AE,
∴∠BAC=∠BAE,
∵DE⊥AB,
∴∠ADE=90°,
∵,
∴∠AED=∠DAE=45°,
∴∠BAC=∠BAE=22.5°,
∴∠B=90°-∠BAC=67.5°.
故答案为:67.5°.
【点睛】
本题考查了线段垂直平分线的性质,等腰三角形的性质及直角三角形的性质,正确作出辅助线是解题的关键.
5、6或10
【分析】
先利用平行线的性质和等角对等边的性质得到AB=AD,再根据点E在D的左边和右边分别求解即可;
【详解】
∵平分,
∴,
∵,
∴,
∴,
∴是等腰三角形,
∴,
当点E在线段AD上时,
∵,,
∴,
当点E在线段AD延长线上时,
∵,,
∴;
故答案是:6或10.
【点睛】
本题主要考查了平行线的性质,角平分线的定义,等角对等边,先证出AB=AD是解题的关键.
三、解答题
1、(1)见解析;(2)42°
【分析】
(1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
(2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
【详解】
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.
∴∠BAC=∠DAE.
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD;
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
∵△ABC≌△ADE,
∴∠AED=∠C=69°,
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
2、见解析
【分析】
根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
【详解】
证明:在△AEC与△ADB中,
,
∴△AEC≌△ADB(SAS),
∴∠ACE=∠ABD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴OB=OC.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
3、
(1)△AMN是是等腰三角形;理由见解析;
(2)①证明见解析;②a﹣b.
【分析】
(1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
(2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
(1)
解:△AMN是是等腰三角形,
理由如下:
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴△AMN是等腰三角形;
(2)
①证明:∵BP平分∠ABC,
∴∠PBM=∠PBC,
∵MN∥BC,
∴∠MPB=∠PBC
∴∠PBM=∠MPB,
∴MB=MP,
∴△BPM是等腰三角形;
②由①知MB=MP,
同理可得:NC=NP,
∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
∵△ABC的周长为a,BC=b,
∴AB+AC+b=a,
∴AB+AC=a﹣b
∴△AMN的周长=a﹣b.
【点睛】
本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
4、见解析
【分析】
根据平行线的性质得出,运用“角角边”证明△AEB≌△CFD即可.
【详解】
证明:∵,
∴,
在△AEB和△CFD中,
∴△AEB≌△CFD,
∴.
【点睛】
本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明.
5、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
【分析】
(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(3)设∠BAD=x,仿照(2)的解法计算.
【详解】
解:(1)∵∠ADC是△ABD的外角,
∴∠ADC=∠BAD+∠B=105°,
∠DAE=∠BAC﹣∠BAD=30°,
∴∠ADE=∠AED=75°,
∴∠CDE=105°﹣75°=30°;
(2)∠BAD=2∠CDE,
理由如下:设∠BAD=x,
∴∠ADC=∠BAD+∠B=45°+x,
∠DAE=∠BAC﹣∠BAD=90°﹣x,
∴∠ADE=∠AED=,
∴∠CDE=45°+x﹣=x,
∴∠BAD=2∠CDE;
(3)设∠BAD=x,
∴∠ADC=∠BAD+∠B=∠B+x,
∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
∴∠ADE=∠AED=∠C+x,
∴∠CDE=∠B+x﹣(∠C+x)=x,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
6、见解析
【分析】
由“ASA”可证△ABO≌△DCO,可得结论.
【详解】
证明:如图,记的交点为
∵∠ABC=∠DCB,∠1=∠2,
又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,
∴∠OBC=∠OCB,
∴OB=OC,
在△ABO和△DCO中,,
∴△ABO≌△DCO(ASA),
∴AB=DC.
【点睛】
本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.
7、
【分析】
先由旋转的性质证明再利用等边对等角证明从而可得答案.
【详解】
解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°,
【点睛】
本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.
8、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
【分析】
(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
(2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
【详解】
解:(1)依题意补全图形,如图所示:连接AD,
∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵,
∴,
∵B、D关于AP对称,
∴,AD=AB=AC,∠AEC=∠AEB,
∴,
∴,
∴,
∴
∴∠AEB=60°.
(2)AE=BE+CE.
证明:如图,在AE上截取EG=BE,连接BG.
∵∠AEB=60°,
∴△BGE是等边三角形,
∴BG=BE=EG,∠GBE=60°.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
∴∠ABG=∠CBE.
在△ABG和△CBE中,
∴△ABG≌△CBE(SAS),
∴AG=CE,
∴AE=EG+AG=BE+CE.
【点睛】
本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
9、见解析.
【分析】
先根据角平分线的定义得到∠BAD=∠BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=∠BAC,从而得到∠BAD=∠E,即可证明AD∥CE.
【详解】
解:∵AD平分∠BAC,
∴∠BAD=∠BAC,
∵AE=AC,
∴∠E=∠ACE,
∵∠E+∠ACE=∠BAC,
∴∠E=∠BAC,
∴∠BAD=∠E,
∴AD∥CE.
【点睛】
本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.
10、(1)∠E=35°;(2)AH⊥BE.理由见解析.
【分析】
(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
(2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
【详解】
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵∠BAC=40°,
∴∠ABC=(180°-∠BAC)=70°,
∵BD平分∠ABC,
∴∠CBD=∠ABC=35°,
∵AE∥BC,
∴∠E=∠CBD=35°;
(2)∵BD平分∠ABC,∠E=∠CBD,
∴∠CBD=∠ABD=∠E,
∴AB=AE,
在△ABD和△AEF中,
,
∴△ABD≌△AEF(SAS),
∴AD=AF,
∵点H是DF的中点,
∴AH⊥BE.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共29页。试卷主要包含了如图,AB=AC,点D等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题,共36页。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题,共34页。试卷主要包含了下列叙述正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)