终身会员
搜索
    上传资料 赚现金

    2022年最新强化训练京改版八年级数学下册第十四章一次函数同步测评试题(名师精选)

    立即下载
    加入资料篮
    2022年最新强化训练京改版八年级数学下册第十四章一次函数同步测评试题(名师精选)第1页
    2022年最新强化训练京改版八年级数学下册第十四章一次函数同步测评试题(名师精选)第2页
    2022年最新强化训练京改版八年级数学下册第十四章一次函数同步测评试题(名师精选)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题

    展开

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共28页。试卷主要包含了已知点,若一次函数y=kx+b等内容,欢迎下载使用。


    京改版八年级数学下册第十四章一次函数同步测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是(  )
    A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)
    2、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为(  )
    A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)
    3、已知点A(a+9,2a+6)在y轴上,a的值为(  )
    A.﹣9 B.9 C.3 D.﹣3
    4、在平面直角坐标系中,任意两点,,,.规定运算:①,;②;③当,且时,.
    有下列三个命题:
    (1)若,,则,;
    (2)若,则;
    (3)对任意点,,,均有成立.
    其中正确命题的个数为( )
    A.0个 B.1个 C.2个 D.3个
    5、已知点(﹣1,y1)、(2,y2)在函数y=﹣2x+1图象上,则y1与y2的大小关系是( )
    A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
    6、若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b﹣1<0的解集为(  )
    A.x<0 B.x>0 C.x>1 D.x<1
    7、如图,一次函数的图象经过点,则下列结论正确的是( )

    A.图像经过一、二、三象限 B.关于方程的解是
    C. D.随的增大而减小
    8、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
    A.-3 B.-1 C.2 D.4
    9、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
    A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)
    10、平面直角坐标系中,点P(2022,a)(其中a为任意实数),一定不在( )
    A.第一象限 B.第二象限 C.直线y=x上 D.坐标轴上
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、任何一个以x为未知数的一元一次不等式都可以变形为_____(a≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.
    2、已知自变量为x的函数y=mx+2-m是正比例函数,则m=_________ .
    3、(1)一次函数y=kx+b(k≠0)的图象经过点(0,b).当k>0时,y的值随着x值的增大而____;当k<0时,y的值随着x值的增大而_____.
    (2)形如_____(k是常数,k____0)的函数,叫做正比例函数,其中比例系数是_____.
    4、直线y2x3与x轴的交点坐标是______,与y轴的交点坐标是______.
    5、如图,在平面直角坐标系中,,点,的坐标分别是,,则点的坐标是______.

    三、解答题(5小题,每小题10分,共计50分)
    1、已知,一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,正方形BOCD的顶点D在第二象限内,直线DE交AB于点E,交x轴于点F,

    (1)求点D的坐标和AB的长;
    (2)若△BDE≌△AFE,求点E的坐标;
    (3)若点P、点Q是直线BD、直线DF上的一个动点,当△APQ是以AP为直角边的等腰直角三角形时,直接写出Q点的坐标.
    2、在同一直角坐标系内画出正比例函数y=-2x与y=0.5x的图象.
    3、为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买、两种不同型号的篮球共300个.已知购买3个型篮球和2个型篮球共需340元,购买2个型篮球和1个型篮球共需要210元.
    (1)求购买一个型篮球、一个型篮球各需多少元?
    (2)若该校计划投入资金元用于购买这两种篮球,设购进的型篮球为个,求关于的函数关系式;
    (3)学校在体育用品专卖店购买、两种型号篮球共300个,经协商,专卖店给出如下优惠:种球每个降价8元,种球打9折,计算下来,学校共付费16740元,学校购买、两种篮球各多少个?
    4、如图,在平面直角坐标系中,点O为坐标原点,点A在y轴上,点B,C在x轴上,,,.
    (1)求线段AC的长;
    (2)点P从C点出发沿射线CA以每秒2个单位长度的速度运动,过点A作,点F在y轴的左侧,,过点F作轴,垂足为E,设点P的运动时间为t秒,请用含t的式子表示EF的长;
    (3)在(2)的条件下,直线BP交y轴于点K,,当时,求t的值,并求出点P的坐标.

    5、已知一次函数y=-2x+4.求:
    (1)求图象与x轴、y轴的交点A、B的坐标.
    (2)画出函数的图象.
    (3)求△AOB的面积.


    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.
    【详解】
    解:∵轴,且,点B在第二象限,
    ∴点B一定在点A的左侧,且两个点纵坐标相同,
    ∴,即,
    故选:A.
    【点睛】
    题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.
    2、C
    【解析】
    【分析】
    点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.
    【详解】
    ∵P点到x、y轴的距离分别是4、3,
    ∴点P的纵坐标绝对值为4、横坐标的绝对值为3,
    ∵点P在第二象限内,
    ∴点P的坐标为(-3,4),
    故选:C.
    【点睛】
    本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.
    3、A
    【解析】
    【分析】
    根据y轴上点的横坐标为0列式计算即可得解.
    【详解】
    解:∵点A(a+9,2a+6)在y轴上,
    ∴a+9=0,
    解得:a=-9,
    故选:A.
    【点睛】
    本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
    4、D
    【解析】
    【分析】
    根据新的运算定义分别判断每个命题后即可确定正确的选项.
    【详解】
    解:(1)A⊕B=(1+2,2-1)=(3,1),A⊗B=1×2+2×(-1)=0,
    ∴①正确;
    (2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),
    ∵A⊕B=B⊕C,
    ∴x1+x2=x2+x3,y1+y2=y2+y3,
    ∴x1=x3,y1=y3,
    ∴A=C,
    ∴②正确.
    (3)∵(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),
    ∴(A⊕B)⊕C=A⊕(B⊕C),
    ∴③正确.
    正确的有3个,
    故选:D.
    【点睛】
    本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
    5、A
    【解析】
    【分析】
    先根据一次函数的解析式判断出函数的增减性,再根据−1<2即可得出结论.
    【详解】
    解:∵一次函数y=−2x+1中,k=−2<0,
    ∴y随着x的增大而减小.
    ∵点(﹣1,y1)、(2,y2)是一次函数y=−2x+1图象上的两个点,−1<2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象的增减性是解答此题的关键.
    6、D
    【解析】
    【分析】
    利用函数的增减性和x=1时的函数图像上点的位置来判断即可.
    【详解】
    解:如图所示:k>0,函数y= kx+b随x的增大而增大,直线过点B(1,1),
    ∵当x=1时,kx+b=1,即kx+b-1=0,
    ∴不等式kx+b﹣1<0的解集为:x<1.
    故选择:D.

    【点睛】
    此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.
    7、A
    【解析】
    【分析】
    根据函数图象可知图象经过一、二、三象限,即可判断A选项,从图象上无法得知与轴的交点坐标,无法求得方程的解,即可判断B选项,根据图象与轴的交点,可知,进而可知,即可判断C选项,根据图象经过一、二、三象限,,即可知随的增大而增大,进而判断D选项
    【详解】
    A. 图像经过一、二、三象限,故该选项正确,符合题意;
    B. 关于方程的解不一定是,不正确,不符合题意
    C. 根据图象与轴的交点,可知,则,故该选项不正确,不符合题意;
    D. 图象经过一、二、三象限,,随的增大而增大,故该选项不正确,不符合题意;
    故选A
    【点睛】
    本题考查了一次函数图象的性质,与坐标轴交点问题,增减性,熟练掌握一次函数图象的性质是解题的关键.
    8、B
    【解析】
    【分析】
    先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
    【详解】
    解:根据题意,
    ∵y1>y2,
    ∴,
    解得:,
    ∴,
    ∴;,
    ∵当x<1时,y1>y2,

    ∴,
    ∴;
    ∴k的值可以是-1;
    故选:B.
    【点睛】
    本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
    9、A
    【解析】
    【分析】
    由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
    【详解】
    解:由题意可知BO=CO,
    ∵又AB=AC,
    ∴AO⊥BC,
    ∴点A在y轴上,
    ∴选项A符合题意,
    B选项三点共线,不能构成三角形,不符合题意;
    选项C、D都不在y轴上,不符合题意;
    故选:A.
    【点睛】
    本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
    10、B
    【解析】
    【分析】
    对取不同值进行验证分析即可.
    【详解】
    解:A、当,点P在第一象限,故A不符合题意.
    B、由于横坐标为,点P一定不在第二象限,故B符合题意.
    C、当,点P在直线y=x上,故C不符合题意.
    D、当时,点P在x轴上,故D不符合题意.
    故选:B.
    【点睛】
    本题主要是考查了横纵坐标的取值与其在直角坐标系中的位置关系,熟练根据横纵坐标的不同取值,判断坐标点所在的位置,是解决该题的关键.
    二、填空题
    1、 ax+b>0或ax+b<0 y=ax+b 自变量
    【解析】
    【分析】
    根据一次函数图象与一元一次不等式的关系解答.
    【详解】
    解:任何一个以x为未知数的一元一次不等式都可以变形为ax+b>0或ax+b<0 (a≠0)的形式,所以解一元一次不等式相当于在某个一次函数y=ax+b的值大于0或小于0时,求自变量的取值范围.
    故答案为:ax+b>0或ax+b<0;y=ax+b;自变量.
    【点睛】
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    2、2
    【解析】
    【分析】
    根据正比例函数的定义可得答案.
    【详解】
    解:∵已知自变量为x的函数y=mx+2-m是正比例函数,
    ∴m≠0,2﹣m=0,
    ∴m=2,
    故答案为:2.
    【点睛】
    解题关键是掌握正比例函数的定义,解题关键是明确正比例函数为y=kx的形式,其中k为常数且k≠0,自变量次数为1.
    3、 增大 减小 y=kx ≠ k
    【解析】
    【分析】
    (1)根据一次函数的性质填写即可;
    (2)根据正比例函数得概念填写即可.
    【详解】
    解:(1)∵函数为一次函数 ,
    ∴当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小;
    (2)由正比例函数概念可知:
    把形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中比例系数是k.
    故答案为:①增大 ② 减小 ③y=kx ④≠ ⑤k.
    【点睛】
    本题考查了正比例概念和一次函数的性质,做题的关键是牢记正比例和一次函数的概念准确填写.
    4、 (,0)##(1.5,0) (0,﹣3)
    【解析】
    【分析】
    分别根据x、y轴上点的坐标特点进行解答即可.
    【详解】
    令y=0,则2x﹣3=0,解得:x,故直线与x轴的交点坐标为:(,0);
    令x=0,则y=﹣3,故直线与y轴的交点坐标为:(0,﹣3).
    故答案为(,0),(0,﹣3).
    【点睛】
    本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.
    5、
    【解析】
    【分析】
    如图,过作于 证明轴,则轴, 再利用等腰三角形的性质求解 利用勾股定理求解 从而可得答案.
    【详解】
    解:如图,过作于


    轴,则轴,





    故答案为:
    【点睛】
    本题考查的是等腰三角形的性质,坐标与图形,勾股定理的应用,掌握“坐标与线段长度的关系”是解本题的关键.
    三、解答题
    1、(1)(-4,4),AB= ;(2)(-1,2);(3)(, )、(-6, )、(14,-8)、(2,0)
    【解析】
    【分析】
    (1)分别令一次函数解析式中的x=0、y=0,求出y、x,据此可得点A、B的坐标,求出AB的值,由正方形的性质可得点D的坐标;
    (2)由全等三角形的性质可得AF=BD=4,求出直线DF的解析式,然后联立直线AB的解析式可得点E的坐标;
    (3)分情况讨论:当点P在线段BD上时,利用函数解析式可求出点F的坐标,可证得AF=AP,可知点Q与点F重合,即可得到点Q的坐标;如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,易证△APH≌△PMQ,BH=2=AO,利用全等三角形的性质可证得QM=HP,AH=PM=4,利用函数解析式表示出点Q(a,),可表示出MQ,PH的长,根据PB的长,建立关于a的方程,解方程取出a的值,然后求出点Q的纵坐标,即可得到点Q的坐标;如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,设点Q(a,),易证△PHQ≌△APM,利用全等三角形的性质分别表示出BH,OM的长QH的长,根据QH的长建立关于a的方程,解方程求出a的值,即可得到点Q的坐标.
    【详解】
    解:(1)一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,
    令x=0,y=4;y=0,x=-2
    ∴点A、B的坐标分别为:(-2,0)、(0,4),
    ∴OA=2,OB=4
    由勾股定理得,AB= ,
    ∵四边形BOCD是正方形
    ∴BD=OB=CD=OC=4,
    ∴D的坐标为(-4,4)
    (2)解:∵△BDE≌△AFE,
    ∴AF=BD=4,
    ∴OF=2
    ∴F(2,0),
    设直线DF的解析式为
    把D(-4,4),F(2,0)代入得,
    解得,
    ∴直线DF的解析式为
    联立方程组
    解得,
    ∴点E的坐标为(-1,2)
    (3)如图,

    当点P在线段BD上时
    ∵点A(-2,0),点F(2,0)
    ∴AF=2-(-2)=4,
    当点Q与点F重合时,DA⊥BD于点P,
    ∴DA=AF=4,∠DAF=90°,
    ∴点Q(2,0);
    如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,

    易证△APH≌△PMQ,BH=2=AO
    ∴QM=HP,AH=PM=4,
    设点Q(a,)
    ∴;

    解之:a=14
    ∴当a=14时,y==-8,
    ∴点Q(14,-8);
    如图,当点Q在FD的延长线上时,∠QAP=90°,过点Q作QH⊥x轴于点H,过点P作PM⊥x轴于点M,

    易证△AQH≌△APM,
    ∴QH=AM,PM=AH=4,
    ∵OA=2,
    ∴OH=4+2=6,
    ∴点P的横坐标为-6
    当x=-6时y,
    ∴点Q;
    如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,

    设点Q(a,)
    易证△PHQ≌△APM,
    ∴PM=PH=4,AM=QH,
    ∴BH=-a,OM=-a-4,
    ∴AM=QH=2-(-a-4)=a+6,QH=

    解之:

    ∴点Q
    ∴点Q的坐标为:或或(14,-8)或(2,0).
    【点睛】
    本题属于一次函数综合题,考查了两一次函数图象相交或平行问题,三角形全等及其性质,正方形的性质,一次函数图象与坐标轴交点问题,等腰直角三角形等知识,解题的关键是熟练掌握基本知识.
    2、见祥解
    【解析】
    【分析】
    利用两点确定一条直线,通过描点法画出直线即可.
    【详解】
    解:经过(0,0)和(1,-2)两个点可以画出函数y=-2x的图象;
    经过(0,0)和(1,0.5)两个点可以画出函数y=0.5x的图象.如图所示:

    【点睛】
    本题考查了正比例函数和一次函数的图象的画法,利用两点画图是解题的关键.
    3、(1)一个A型篮球为80元,一个B型篮球为50元;(2)函数解析式为:W=30t+15000(0≤t≤300);(3)A型篮球120个,则B型篮球为180个.
    【解析】
    【分析】
    (1)设一个A型篮球为x元,一个B型篮球为y元,根据题意列出方程组求解即可得;
    (2)A型篮球t个,则B型篮球为(300-t)个,根据单价、数量、总价的关系即可得;
    (3)根据A型篮球与B型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.
    【详解】
    解:(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意可得:
    3x+2y=3402x+y=210,
    解得:x=80y=50,
    ∴一个A型篮球为80元,一个B型篮球为50元;
    (2)A型篮球t个,则B型篮球为(300-t)个,根据题意可得:
    W=80t+50300-t=30t+15000(0≤t≤300),
    ∴函数解析式为:W=30t+15000(0≤t≤300);
    (3)根据题意可得:A型篮球单价为(80-8)元,B型篮球单价为50×0.9元,则
    16740=(80-8)t+50×0.9×300-t,
    解得:t=120,300-t=180,
    ∴A型篮球120个,则B型篮球为180个.
    【点睛】
    题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.
    4、(1)8,(2)见解析,(3)(,)或(,);
    【解析】
    【分析】
    (1)根据30°角所对直角边等于斜边一半,求出OA长,即可求AC长;
    (2)作PG⊥OA于G,证△AFE≌△PAG,得出,用含t的式子表示AG的长即可;
    (3)作PN⊥OB于N,证Rt△BOK≌Rt△AOC,得出,求出AP的长即可求t的值,求出NP、ON的长即可求坐标.
    【详解】
    解:(1)∵,,
    ∴,
    ∵,,
    ∴;
    (2)作PG⊥OA于G,当点P在线段CA上时,CP=2t,AP=8-2t,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴△AFE≌△PAG,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴;

    当点P在线段CA延长线上时,CP=2t,AP=2t -8,
    同理可得△AFE≌△PAG,


    (3)作PN⊥OB于N,
    如图,∵,,,
    ∴Rt△BOK≌Rt△AOC,
    ∴, ,
    ∵,
    ∴,
    ∴,
    此时,点P在线段CA延长线上,
    ∴,

    ∵,
    ∴,
    ∵PN⊥OB,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    点P的坐标为(,)

    如图,同理可知Rt△BOK≌Rt△AOC,

    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,


    同理可得,,,,
    点P的坐标为(,);
    综上,点P的坐标为(,)或(,);

    【点睛】
    本题考查了全等三角形的判定与性质,含30°角的直角三角形的性质,解题关键是恰当作辅助线,通过证明三角形全等,得出线段之间的关系.
    5、(1)A(2,0)B(0,4);(2)见解析;(3)S△AOB=4
    【解析】
    【分析】
    (1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;
    (2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;
    (3)直接利用三角形的面积公式求解.
    【详解】
    解:(1)让y=0时,
    ∴0=-2x+4
    解得:x=2;
    让x=0时,
    ∴y=-2×0+4=4,
    ∴一次函数y=-2x+4的图象与x轴、y轴的交点坐标是A(2,0),B(0,4);
    (2)如下图是一次函数y=-2x+4的图象;

    (3)S△AOB=12×AO×BO=12×2×4=4
    【点睛】
    本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A、B的坐标.

    相关试卷

    数学八年级下册第十四章 一次函数综合与测试习题:

    这是一份数学八年级下册第十四章 一次函数综合与测试习题,共27页。试卷主要包含了函数y=的自变量x的取值范围是,一次函数的一般形式是等内容,欢迎下载使用。

    八年级下册第十四章 一次函数综合与测试当堂检测题:

    这是一份八年级下册第十四章 一次函数综合与测试当堂检测题,共19页。试卷主要包含了一次函数y=,点在第四象限,则点在第几象限,在平面直角坐标系中,点P,点在,已知一次函数y=ax+b等内容,欢迎下载使用。

    数学八年级下册第十四章 一次函数综合与测试课后作业题:

    这是一份数学八年级下册第十四章 一次函数综合与测试课后作业题,共27页。试卷主要包含了点在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map