北京课改版八年级下册第十四章 一次函数综合与测试随堂练习题
展开京改版八年级数学下册第十四章一次函数综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
2、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
3、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )
A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x
4、已知为第四象限内的点,则一次函数的图象大致是( )
A. B.
C. D.
5、一个一次函数图象与直线y=x+平行,且过点(﹣1,﹣25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )
A.4个 B.5个 C.6个 D.7个
6、在平面直角坐标系中,任意两点,,,.规定运算:①,;②;③当,且时,.
有下列三个命题:
(1)若,,则,;
(2)若,则;
(3)对任意点,,,均有成立.
其中正确命题的个数为( )
A.0个 B.1个 C.2个 D.3个
7、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
8、下列各图中,不能表示y是x的函数的是( )
A. B.
C. D.
9、关于一次函数y=﹣2x+3,下列结论正确的是( )
A.图象与x轴的交点为(,0)
B.图象经过一、二、三象限
C.y随x的增大而增大
D.图象过点(1,﹣1)
10、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一次函数的图象经过第一、三、四象限,则k的取值范围是______________.
2、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.
3、(1)一次函数y=kx+b(k≠0)的图象经过点(0,b).当k>0时,y的值随着x值的增大而____;当k<0时,y的值随着x值的增大而_____.
(2)形如_____(k是常数,k____0)的函数,叫做正比例函数,其中比例系数是_____.
4、甲、乙两施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务.下表根据每天工程进度绘制而成的.
施工时间/天
1
2
3
4
5
6
7
8
9
累计完成施工量/米
35
70
105
140
160
215
270
325
380
下列结论:①甲队每天修路20米;②乙队第一天修路15米;③乙队技术改进后每天修路35米;④前7天甲、乙两队修路长度相等.其中正确的结论有_______.(填序号).
5、一次函数y1=ax+b与y2=mx+n的部分自变量和对应函数值如下表:
x
…
0
1
2
3
…
y1
…
2
1
…
x
…
0
1
2
3
…
y2
…
﹣3
﹣1
1
3
…
则关于x的方程ax﹣mx=n﹣b的解是_________.
三、解答题(5小题,每小题10分,共计50分)
1、已知一次函数的图像经过点A(-1,-2),B(0,1).
(1)求k、b的值;
(2)画出这个函数的图像;
(3)当x>1时,y的取值范围是 .
2、已知:A、B都是x轴上的点,点A的坐标是(3,0),且线段AB的长等于4,点C的坐标是(0,2).
(1)直接写出点B的坐标.
(2)求直线BC的函数表达式.
3、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,
(1)求的度数;
(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);
(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、、,,且四边形的面积为25,求的长.
4、某通讯公司推出①、②两种通讯收费方式供用户选择,其中①有月租费,②无月租费,两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系图象均为直线,如图所示.请根据图象回答下列问题:
(1)当通讯时间为500分钟时,①方式收费 元,
②方式收费 元;
(2)②收费方式中y与x之间的函数关系式是 ;
(3)如果某用户每月的通讯时间少于200分钟,那么此用户应该选择收费方式是 (填①或②).
5、已知一次函数.
(1)画出函数图象.
(2)不等式>0的解集是_______;不等式<0的解集是_______.
(3)求出函数图象与坐标轴的两个交点之间的距离.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
2、A
【解析】
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
3、D
【解析】
【分析】
先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.
【详解】
解:∵每千米的耗油量为:60×÷100=0.12(升/千米),
∴y=60-0.12x,
故选:D.
【点睛】
本题考查了函数关系式,求出1千米的耗油量是解题的关键.
4、A
【解析】
【分析】
根据为第四象限内的点,可得 ,从而得到 ,进而得到一次函数的图象经过第一、二、三象限,即可求解.
【详解】
解:∵为第四象限内的点,
∴ ,
∴ ,
∴一次函数的图象经过第一、二、三象限.
故选:A
【点睛】
本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键.
5、A
【解析】
【分析】
由题意可得:求出符合条件的直线为5x﹣4y﹣75=0,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案.
【详解】
解:设直线AB的解析式为y=kx+b,
∵一次函数图象与直线y=x+平行,
∴k=,
又∵所求直线过点(﹣1,﹣25),
∴﹣25=×(﹣1)+b,
解得b=﹣,
∴直线AB为y=x﹣,
∴此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),
设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣25+5N,(N是整数).
因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣25+5N≤0,
解得:≤N≤4,
所以N=1,2,3,4共4个,
故选:A.
【点睛】
本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键.
6、D
【解析】
【分析】
根据新的运算定义分别判断每个命题后即可确定正确的选项.
【详解】
解:(1)A⊕B=(1+2,2-1)=(3,1),A⊗B=1×2+2×(-1)=0,
∴①正确;
(2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),
∵A⊕B=B⊕C,
∴x1+x2=x2+x3,y1+y2=y2+y3,
∴x1=x3,y1=y3,
∴A=C,
∴②正确.
(3)∵(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),
∴(A⊕B)⊕C=A⊕(B⊕C),
∴③正确.
正确的有3个,
故选:D.
【点睛】
本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
7、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
8、D
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.
【详解】
解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;
故选:D
【点睛】
本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.
9、A
【解析】
【分析】
利用一次函数图象上点的坐标特征,可判断出选项A符合题意;利用一次函数图象与系数的关系,可判断出选项B不符合题意;利用一次函数的性质,可判断出选项C不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D不符合题意.
【详解】
解:A.当y=0时,﹣2x+3=0,解得:x=,
∴一次函数y=﹣2x+3的图象与x轴的交点为(,0),选项A符合题意;
B.∵k=﹣2<0,b=3>0,
∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;
C.∵k=﹣2<0,
∴y随x的增大而减小,选项C不符合题意;
D.当x=1时,y=﹣2×1+3=1,
∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.
故选:A.
【点睛】
本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.
10、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
二、填空题
1、##
【解析】
【分析】
根据题意,得k>0,2k-3<0,求解即可.
【详解】
∵一次函数的图象经过第一、三、四象限,
∴k>0,2k-3<0,
∴k的取值范围是,
故答案为:.
【点睛】
本题考查了一次函数图像分布与k,b的关系,根据图像分布,列出不等式,准确求解即可.
2、(2021,0)
【解析】
【分析】
将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.
【详解】
∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得
∴A1点坐标为(2,0)
又∵A2为A1点绕O点顺时针旋转90°所得
∴A2点坐标为(0,-2)
又∵A3为A2点绕C点顺时针旋转90°所得
∴A3点坐标为(-3,1)
又∵A4为A3点绕A点顺时针旋转90°所得
∴A4点坐标为(1,5)
由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.
∵2021÷4=505…1
故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得
故A2021点坐标为(2021,0).
故答案为:(2021,0).
【点睛】
本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.
3、 增大 减小 y=kx ≠ k
【解析】
【分析】
(1)根据一次函数的性质填写即可;
(2)根据正比例函数得概念填写即可.
【详解】
解:(1)∵函数为一次函数 ,
∴当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小;
(2)由正比例函数概念可知:
把形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中比例系数是k.
故答案为:①增大 ② 减小 ③y=kx ④≠ ⑤k.
【点睛】
本题考查了正比例概念和一次函数的性质,做题的关键是牢记正比例和一次函数的概念准确填写.
4、①②③
【解析】
【分析】
根据表格数据准确分析分析计算即可;
【详解】
由表格可以看出乙队是第五天停工的,所以甲队每天修路:(米),故①正确;
乙队第一天修路(米),故②正确;
乙队技术改进之后修路:(米),故③正确;
前7天,甲队修路:(米),乙队修路:,故④错误;
综上所述,正确的有①②③.
故答案是:①②③.
【点睛】
本题主要考查了行程问题的实际应用,准确分析判断是解题的关键.
5、
【解析】
【分析】
根据统计表确定两个函数的的交点,然后判断即可.
【详解】
解:根据表可得一次函数y1=ax+b与y2=mx+n的交点坐标是(2,1).
故可得关于x的方程ax﹣mx=n﹣b的解是,
故答案为:.
【点睛】
本题考查了一次函数的性质,正确确定交点坐标是关键.
三、解答题
1、(1);(2)见详解;(3)
【解析】
【分析】
(1)由待定系数法进行计算,即可得到答案;
(2)由两点画图法,即可画出一次函数的图像;
(3)结合一次函数的性质,即可得到答案.
【详解】
解:(1)∵一次函数的图像经过点A(-1,-2),B(0,1)
∴,
∴;
(2)由(1)可知,一次函数为经过点A(-1,-2),B(0,1),如图:
(3)当时,则,
由图像可知,y随x增大而增大,
∴当x>1时,y的取值范围是;
故答案为:.
【点睛】
本题考查了待定系数法求一次函数的解析式,画函数图像,解题的关键是正确的求出一次函数的解析式.
2、(1)B(7,0)或(﹣1,0);(2)y=-27x+2或y=2x+2
【解析】
【分析】
(1)根据的坐标和AB=4,分在点的左边和右边两种情况求得的坐标;
(2)根据待定系数法求得即可.
【详解】
解:(1)∵A,都是轴上的点,点的坐标是(3,0),且线段的长等于4,
∴B(7,0)或(-1,0);
(2)设直线的解析式为,
直线经过C(0,2),
直线的解析式为y=kx+2,
当B(7,0)时,0=7k+2,解得k=-27,
当B(-1,0)时,0=-k+2,解得k=2,
直线的函数表达式为y=-27x+2或y=2x+2.
【点睛】
本题考查了待定系数法求一次函数的解析式,解题的关键是根据题意求得的两个坐标.
3、(1);(2);(3)5
【解析】
【分析】
(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;
(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;
(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得
【详解】
(1)
是等腰直角三角形,
(2)①当点在轴正半轴时,如图,
,,
,
②当点在原点时,都在轴上,不能构成三角形,则时,不存在
③当点在轴负半轴时,如图,
,,
,
综上所述:
(3)如图,过点作,连接
,
设,,则,
是等腰直角三角形
在和中
,
是等腰直角三角形
中,
,
又
【点睛】
本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.
4、(1)80,100;(2)y2=0.2x;(3)②
【解析】
【分析】
(1)根据题意由函数图象就可以得出①②收费;
(2)根据题意设②中y与x的关系式为y2=k2x,由待定系数法求出k2值即可;
(3)根据题意设①中y与x的关系式为y1=k1x+b,再讨论当y1>y2,y1=y2,y1<y2时求出x的取值就可以得出结论.
【详解】
解:(1)由函数图象,得:
①方式收费80元,②方式收费100元,
故答案为:80,100;
(2)设②中y与x的关系式为y2=k2x,由题意,得
100=500k2,
∴k=0.2,
∴函数解析式为:y2=0.2x;
(3)设①中y与x的关系式为y1=k1x+b,由函数图象,得:
b=30500k1+b=80,
解得:k1=0.1b=30,
∴y1=0.1x+30,
当y1>y2时,0.1x+30>0.2x,
解得:x<300,
当y1=y2时,0.1x+30=0.2x,
解得:x=300,
当y1<y2时,0.1x+30<0.2x,
x>300,
∵200<300,
∴方式②省钱.
故答案为:②.
【点睛】
本题考查待定系数法求一次函数的解析式的运用,分类讨论思想的运用,设计方案的运用,解答时认真分析函数图象的意义是解题的关键.
5、(1)见解析;(2)x<-3;x>-3;(3)BC=35.
【解析】
【分析】
(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;
(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;
(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)
【详解】
(1)当x=0时,y=-2x-6=-6,
∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);
当y=-2x-6=0时,解得:x=-3,
∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).
描点连线画出函数图象,如图所示.
(2)观察图象可知:当x<-3时,
一次函数y=-2x-6的图象在x轴上方;
当x>-3时,一次函数y=-2x-6的图象在x轴下方.
∴不等式-2x-6>0的解集是x<-3;
不等式-2x-6<0的解集是x>-3.
故答案是:x<-3,x>-3;
(3)∵B(-3,0),C(0,-6),
∴OB=3,OC=6,
∴BC=OB2+OC2=35
【点睛】
本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.
初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共28页。试卷主要包含了已知点,若一次函数y=kx+b等内容,欢迎下载使用。
2021学年第十四章 一次函数综合与测试一课一练: 这是一份2021学年第十四章 一次函数综合与测试一课一练,共26页。试卷主要包含了如图,一次函数y=kx+b等内容,欢迎下载使用。
初中第十四章 一次函数综合与测试同步练习题: 这是一份初中第十四章 一次函数综合与测试同步练习题,共24页。试卷主要包含了已知一次函数y=,一次函数y=,点P在第二象限内,P点到x等内容,欢迎下载使用。