搜索
    上传资料 赚现金
    难点详解沪教版(上海)七年级数学第二学期第十二章实数同步练习试题(无超纲)
    立即下载
    加入资料篮
    难点详解沪教版(上海)七年级数学第二学期第十二章实数同步练习试题(无超纲)01
    难点详解沪教版(上海)七年级数学第二学期第十二章实数同步练习试题(无超纲)02
    难点详解沪教版(上海)七年级数学第二学期第十二章实数同步练习试题(无超纲)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题

    展开
    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题,共21页。试卷主要包含了16的平方根是,下列说法正确的是,可以表示,下列说法等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数同步练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、三个实数,2,之间的大小关系(  )

    A.>2 B.>2> C.2> D.<2<

    2、下列计算正确的是(    ).

    A. B. C. D.

    3、下列说法正确的是( 

    A.0.01是0.1的平方根

    B.小于0.5

    C.的小数部分是

    D.任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方……如此进行下去,得到的数会越来越趋近1

    4、16的平方根是(  )

    A.±8 B.8 C.4 D.±4

    5、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是(   

    A.6cm B.12cm C.18cm D.24cm

    6、下列说法正确的是(   

    A.5是25的算术平方根 B.的平方根是±6

    C.(﹣6)2的算术平方根是±6 D.25的立方根是±5

    7、可以表示(   

    A.0.2的平方根 B.的算术平方根

    C.0.2的负的平方根 D.的立方根

    8、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为(   

    A.4 B.6 C.12 D.36

    9、下列说法:①-27的立方根是3;②36的算数平方根是;③的立方根是;④的平方根是.其中正确说法的个数是(   

    A.1 B.2 C.3 D.4

    10、在实数,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有(    )个

    A.2 B.3 C.4 D.5

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、比较大小: _____ (填“<”或“>”符号)

    2、若,且ab是两个连续的整数,则的值为______.

    3、对于实数ab,且(ab),我们用符号min{ab}表示ab两数中较小的数,例如:min(1,﹣2)=﹣2.

    (1)min(﹣,﹣)=_____;

    (2)已知mina)=aminb)=,若ab为两个连续正整数,则a+b=_____.

    4、已知xy是实数,且+(y-3)2=0,则xy的立方根是__________.

    5、计算______.

    三、解答题(10小题,每小题5分,共计50分)

    1、(1)计算:

    (2)求下列各式中的x

    ②(x+3)3=﹣27.

    2、求下列各数的立方根:

    (1)729

    (2)

    (3)

    (4)

    3、计算:

    (1)

    (2)

    4、对于一个三位自然数m,若m的百位数字等于两个一位正整数ab的和m的个位数字等于两个一位正整数ab的差,m的十位数字等于b,则称m是“和差数”,规定.例如:723是“和差数”,因为,所以723是“和差数”,即

    (1)填空:______.

    (2)请判断311是否是“和差数”?并说明理由;

    (3)若一个三位自然数xy是整数,即n的百位数字是9,十位数字是x,个位数字是y)为“和差数”,求所有满足条件的“和差数”n

    5、计算题:

    (1)

    (2)

    6、求下列各式中的x

    (1)

    (2)

    7、解方程:

    (1)x2=81;

    (2)(x﹣1)3=27.

    8、阅读材料,回答问题.

    下框中是小马同学的作业,老师看了后,找来小马.

    问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”

    小马点点头.

    老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”

    请把实数|﹣|,﹣π,﹣4,,2表示在数轴上,并比较它们的大小(用<号连接).

    解:

    请你帮小马同学将上面的作业做完.

    9、已知ab互为相反数,cd互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.

    10、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为abab).定义:若数mb3a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3a3=(ba)(b2+ab+a2).)

    (1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;

    (2)已知两个“复合数”的差是42,求这两个“复合数”.

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    ,根据被开方数的大小即判断这三个数的大小关系

    【详解】

    2<

    故选A

    【点睛】

    本题考查了实数大小比较,掌握无理数的估算是解题的关键.

    2、D

    【分析】

    由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.

    【详解】

    解:没有意义,故A不符合题意;

    ,故B不符合题意;

    ,故C不符合题意;

    ,运算正确,故D符合题意;

    故选D

    【点睛】

    本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.

    3、C

    【分析】

    根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可.

    【详解】

    解:A、0.1是0.01的平方根,原说法错误,不符合题意;

    B、由,得,原说法错误,不符合题意;

    C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;

    D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;

    故选:C.

    【点睛】

    本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键.

    4、D

    【分析】

    根据平方根可直接进行求解.

    【详解】

    解:∵(±4)2=16,

    ∴16的平方根是±4.

    故选:D.

    【点睛】

    本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.

    5、D

    【分析】

    由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.

    【详解】

    解:∵每个小立方体的体积为216cm3

    ∴小立方体的棱长

    由三视图可知,最高处有四个小立方体,

    ∴该几何体的最大高度是4×6=24cm,

    故选D.

    【点睛】

    本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.

    6、A

    【分析】

    如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根;据此判断即可.

    【详解】

    解:A、5是25的算术平方根,正确,符合题意;

    B、,6的平方根是±,错误,不符合题意;

    C、(﹣6)2的算术平方根是6,错误,不符合题意;

    D、25的平方根是±5,错误,不符合题意;

    故选:A.

    【点睛】

    本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键.

    7、C

    【分析】

    根据平方根和算术平方根的定义解答即可.

    【详解】

    解:可以表示0.2的负的平方根,

    故选:C

    【点睛】

    此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.

    8、D

    【分析】

    根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.

    【详解】

    解:∵一个正数a的两个不同平方根是2x-2和6-3x

    ∴2x-2+6-3x=0,

    解得:x=4,

    ∴2x-2=2×4-2=8-2=6,

    ∴正数a=62=36.

    故选择D.

    【点睛】

    本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.

    9、A

    【分析】

    分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.

    【详解】

    解:①-27的立方根是-3,错误;

    ②36的算数平方根是6,错误;

    的立方根是,正确;

    的平方根是,错误,

    ∴正确的说法有1个,

    故选:A.

    【点睛】

    本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.

    10、C

    【分析】

    利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.

    【详解】

    有理数有:,一共四个.

    无理数有:,1.12112111211112…(每两 个2之间依次多一个1),一共四个.

    故选:C.

    【点睛】

    此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.

    二、填空题

    1、>

    【分析】

    根据实数比较大小的方法判断即可.

    【详解】

    ∵正数大于一切负数,

    故答案为:>.

    【点睛】

    此题主要考查实数的大小比较,熟练掌握实数比较大小的方法是解题的关键.

    2、7

    【分析】

    先判断出的取值范围,确定ab的值,即可求解.

    【详解】

    解:∵

    a=3,b=4,

    a+b=7.

    故答案为:7.

    【点睛】

    本题考查了无理数的估算,正确估算出的取值范围是解题关键.

    3、       

    【分析】

    (1)直接根据min{ab}表示ab两数中较小的数,表示出(﹣,﹣)较小的数即可;

    (2)根据min{ab}表示ab两数中较小的数,得出,根据ab为两个连续正整数,可得结果.

    【详解】

    解:(1)∵

    min(﹣,﹣)=

    故答案为:

    (2)∵mina)=aminb)=

    ab为两个连续正整数,

    故答案为:

    【点睛】

    本题考查了实数的大小比较,无理数的估算,熟练掌握实数的大小比较方法以及无理数的估算方法是解本题的关键.

    4、

    【分析】

    根据二次根式和平方的非负性,可得 ,即可求解.

    【详解】

    解:根据题意得:

    解得:

    故答案为:

    【点睛】

    本题主要考查了二次根式和平方的非负性,立方根的性质,熟练掌握二次根式和平方的非负性,立方根的性质是解题的关键.

    5、##

    【分析】

    根据立方根和算术平方根的求解方法求解即可.

    【详解】

    解:

    故答案为:

    【点睛】

    本题主要考查了算术平方根和立方根,熟知二者的定义是解题的关键.

    三、解答题

    1、(1);(2)①;②

    【分析】

    (1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;

    (2)①对等式进行开平方运算,再把x的系数转化为1即可;

    ②对等式进行开立方运算,再移项即可.

    【详解】

    解:(1)

    =2(﹣2)﹣3

    =﹣3

    (2)①

    ±3

    x=±6;

    ②(x+3)3=﹣27

    x+3=﹣3

    x=﹣6.

    【点睛】

    本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用.

    2、(1)9;(2);(3);(4)-5

    【分析】

    根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.

    【详解】

    解:(1)因为93=729,

    所以729的立方根是9,即

    (2),因为

    所以的立方根是,即

    (3)因为

    所以的立方根是,即

    (4).

    【点睛】

    本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.

    3、(1)5;(2)

    【分析】

    (1)分别求解算术平方根与立方根,再进行加减运算即可;

    (2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.

    【详解】

    解:(1)

    (2)

    【点睛】

    本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.

    4、

    (1)412

    (2)是,理由见解析

    (3)941或933或925或917

    【分析】

    (1)根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,即可得解;

    (2)根据定义即可判断311是“和差数”;

    (3)由题意得到,解得,再结合ab为正整数且,即可得解.

    (1)

    解:根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,故412.

    故答案为:412;

    (2)

    解:311是“和差数”,

    是“和差数”;

    (3)

    解:∵是整数)

    5、

    (1)

    (2)

    【分析】

    (1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;

    (2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.

    (1)

    解:原式=

    (2)

    解:原式=

    【点睛】

    本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.

    6、

    (1)

    (2)

    【分析】

    (1)根据平方根定义开方,求出两个方程的解即可;

    (2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.

    (1)

    开平方得,

    解得,

    (2)

    移项得,

    方程两边同除以8,得,

    开立方,得,

    【点睛】

    本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.

    7、(1)x=±9;(2)x=4

    【分析】

    (1)方程利用平方根定义开方即可求出解;

    (2)方程利用立方根定义开立方即可求出解.

    【详解】

    解:(1)开方得:x=±9;

    (2)开立方得:x﹣1=3,

    解得:x=4.

    【点睛】

    本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).

    8、图见解析,﹣4<﹣π<|﹣|<2<

    【分析】

    根据确定原点,根据数轴上的点左边小于右边的排序依次表示即可.

    【详解】

    把实数||,,2表示在数轴上如图所示,

    <||<2<

    【点睛】

    本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.

    9、-1

    【分析】

    由题意可知,将值代入即可.

    【详解】

    解:由题意得:

    解得

    【点睛】

    本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.

    10、(1)12不是复合数;证明见解析;(2)98和56.

    【分析】

    (1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;

    (2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.

    【详解】

    (1)12不是复合数,

    ∵找不到两个整数ab,使a3b3=12,

    故12不是复合数,

    设“正点”P所表示的数为xx为正整数),

    ax﹣1,bx+1,

    ∴(x+1)3﹣(x﹣1)3

    =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)

    =2(3x2+1)

    =6x2+2,

    ∴6x2+2﹣2=6x2一定能被6整除;

    (2)设两个复合数为6m2+2和6n2+2(mn都是正整数),

    ∵两个“复合数”的差是42,

    ∴(6m2+2)﹣(6n2+2)=42,

    m2n2=7,

    mn都是正整数,

    ∴6m2+2=98,6n2+2=56,

    这两个“复合数”为98和56.

    【点睛】

    本题考查关于实数的新定义题型,理解新定义是解题的关键.

     

    相关试卷

    初中数学第十二章 实数综合与测试练习题: 这是一份初中数学第十二章 实数综合与测试练习题,共18页。试卷主要包含了在下列各数,下列各组数中相等的是,下列各数中,比小的数是,下列各数中,最小的数是,在以下实数等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共21页。试卷主要包含了下列四个数中,最小的数是,的值等于,已知a=,b=-|-|,c=,实数在哪两个连续整数之间,下列说法等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共21页。试卷主要包含了下列说法中错误的是,化简计算﹣的结果是,实数在哪两个连续整数之间,3的算术平方根是,下列等式正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map