搜索
    上传资料 赚现金
    难点解析沪教版(上海)七年级数学第二学期第十二章实数专项攻克练习题
    立即下载
    加入资料篮
    难点解析沪教版(上海)七年级数学第二学期第十二章实数专项攻克练习题01
    难点解析沪教版(上海)七年级数学第二学期第十二章实数专项攻克练习题02
    难点解析沪教版(上海)七年级数学第二学期第十二章实数专项攻克练习题03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题

    展开
    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共20页。试卷主要包含了下列各式中,化简结果正确的是,若关于x的方程,化简计算﹣的结果是,关于的叙述,错误的是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数专项攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列说法中错误的是(  )

    A.9的算术平方根是3 B.的平方根是

    C.27的立方根为 D.平方根等于±1的数是1

    2、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为(   

    A.4 B.6 C.12 D.36

    3、若,则的值为(   

    A. B. C. D.

    4、已知2m﹣1和5﹣ma的平方根,a是(   

    A.9 B.81 C.9或81 D.2

    5、下列各式中,化简结果正确的是(   

    A. B. C. D.

    6、若关于x的方程(k2﹣9)x2+(k﹣3)xk+6是一元一次方程,则k的值为(  )

    A.9 B.﹣3 C.﹣3或3 D.3

    7、化简计算的结果是(   

    A.12 B.4 C.﹣4 D.﹣12

    8、关于的叙述,错误的是(  )

    A.是无理数

    B.面积为8的正方形边长是

    C.的立方根是2

    D.在数轴上可以找到表示的点

    9、如果x>1,那么x﹣1xx2的大小关系是(  )

    A.x﹣1xx2 B.xx﹣1x2 C.x2xx﹣1 D.x2x﹣1x

    10、下列运算正确的是(  )

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、选用适当的不等号填空:﹣_____﹣π.

    2、比较大小:﹣|﹣4|______﹣π.(填“>”、“=”或“<”)

    3、的算术平方根是 _____;﹣64的立方根是 _____.

    4、若=2,则x=___.

    5、若实数ab互为相反数,cd互为倒数,e的整数部分,f的小数部分,则代数式的值是 ___.

    三、解答题(10小题,每小题5分,共计50分)

    1、解方程,求x的值.

    (1)                    

    (2)

    2、已知正数a的两个不同平方根分别是2x﹣2和6﹣3xa﹣4b的算术平方根是4.

    (1)求这个正数a以及b的值;

    (2)求b2+3a﹣8的立方根.

    3、计算:

    4、阅读下列材料:

    的整数部分为3,小数部分为

    请你观察上述的规律后试解下面的问题:如果的整数部分为的小数部分为,求的值.

    5、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,…,这样的分式是假分式;像,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:.解决下列问题:

    (1)写出一个假分式为:   

    (2)将分式化为整式与真分式的和的形式为:    ;(直接写出结果即可)

    (3)如果分式的值为整数,求x的整数值.

    6、计算:

    7、计算下列各题:

    (1)

    (2)

    (3)

    8、已知:,求x+17的算术平方根.

    9、(1)计算:(﹣)×(﹣1)2021+

    (2)求x的值:(3x+2)3﹣1=

    10、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.

    (1)用xcm表示图中空白部分的面积;

    (2)当x=5cm时空白部分面积为多少?

    (3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    根据平方根,算术平方根,立方根的性质,即可求解.

    【详解】

    解:A、9的算术平方根是3,故本选项正确,不符合题意;

    B、因为 ,4的平方根是 ,故本选项正确,不符合题意;

    C、27的立方根为3,故本选项错误,符合题意;

    D、平方根等于±1的数是1,故本选项正确,不符合题意;

    故选:C

    【点睛】

    本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.

    2、D

    【分析】

    根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.

    【详解】

    解:∵一个正数a的两个不同平方根是2x-2和6-3x

    ∴2x-2+6-3x=0,

    解得:x=4,

    ∴2x-2=2×4-2=8-2=6,

    ∴正数a=62=36.

    故选择D.

    【点睛】

    本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.

    3、B

    【分析】

    根据算术平方根、偶次方的非负性确定ab的值,然后代入计算.

    【详解】

    解:

    解得

    所以

    故选:B

    【点睛】

    本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.

    4、C

    【分析】

    分两种情况讨论求解:当2m﹣1与5﹣ma的两个不同的平方根和当2m﹣1与5﹣ma的同一个平方根.

    【详解】

    解:若2m﹣1与5﹣m互为相反数,

    则2m﹣1+5﹣m=0,

    m=﹣4,

    ∴5﹣m=5﹣(﹣4)=9,

    a=92=81,

    若2m﹣1=5﹣m

    m=2,

    ∴5﹣m=5﹣2=3,

    a=32=9,

    故选C.

    【点睛】

    本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.

    5、D

    【分析】

    根据实数的运算法则依次对选项化简再判断即可.

    【详解】

    A,化简结果错误,与题意不符,故错误.

    B,化简结果错误,与题意不符,故错误.

    C,化简结果错误,与题意不符,故错误.

    D,化简结果正确,与题意相符,故正确.

    故选:D   

    【点睛】

    本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.

    6、B

    【分析】

    含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.

    【详解】

    解: 关于x的方程(k2﹣9)x2+(k﹣3)xk+6是一元一次方程,

    由①得:

    由②得:

    所以:

    故选B

    【点睛】

    本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.

    7、B

    【分析】

    根据算术平方根和立方根的计算法则进行求解即可.

    【详解】

    解:

    故选B.

    【点睛】

    本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.

    8、C

    【分析】

    根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.

    【详解】

    解:A是无理数,该说法正确,故本选项不符合题意;

    B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;

    C、8的立方根是2,该说法错误,故本选项符合题意;

    D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;

    故选:C

    【点睛】

    本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.

    9、A

    【分析】

    根据,即可得到,由此即可得到答案.

    【详解】

    解:∵

    故选A.

    【点睛】

    本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法.

    10、B

    【分析】

    依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.

    【详解】

    A、,故A错误;

    B、,故B正确;

    C.,故C错误;

    D.−|-2|=-2,故D错误.

    故选:B.

    【点睛】

    本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.

    二、填空题

    1、<

    【分析】

    先确定的取值范围,再利用实数比较大小的方法进行比较即可.

    【详解】

    解:∵

    ∴5<<6,

    >π,

    ∴﹣<﹣π,

    故答案为:<.

    【点睛】

    此题主要考查了实数的大小比较,关键是掌握正实数都大于0,负实数都小于0,正实数大于-切负实数,两个负实数绝对值大的反而小.

    2、

    【分析】

    先化简绝对值,再根据实数的大小比较法则即可得.

    【详解】

    解:

    因为

    所以,即

    故答案为:

    【点睛】

    本题考查了绝对值、实数的大小比较,熟练掌握实数的大小比较法则是解题关键.

    3、    ﹣4   

    【分析】

    根据立方根、算术平方根的概念求解.

    【详解】

    解:=5,5的算术平方根是

    的算术平方根是

    ﹣64的立方根是﹣4.

    故答案为:,﹣4.

    【点睛】

    本题考查了立方根、算术平方根的知识,掌握各知识点的概念是解答本题的关键.

    4、8

    【分析】

    根据立方根的性值计算即可;

    【详解】

    =2,

    故答案是8.

    【点睛】

    本题主要考查了立方根的性质,准确分析计算是解题的关键.

    5、4-

    【分析】

    根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可.

    【详解】

    解:∵实数ab互为相反数,

    a+b=0,

    cd互为倒数,

    cd=1,

    ∵3<<4,

    的整数部分为3,e=3,

    ∵2<<3,

    的小数部分为-2,即f=-2,

    =0+1-3+-2=

    故答案为:4-

    【点睛】

    本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键.

    三、解答题

    1、(1) ;(2)x=−

    【分析】

    (1)方程变形后,利用平方根定义开方即可求出解;

    (2)把x−1可做一个整体求出其立方根,进而求出x的值.

    【详解】

    解:(1)

    (2)8(x−1)3=−27,

    x−1)3=−

    x−1=−

    x=−

    【点睛】

    本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.

    2、(1);(2)b2+3a﹣8的立方根是5

    【分析】

    (1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;

    (2)将(1)中所求ab的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.

    【详解】

    解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x

    ∴2x﹣2+6﹣3x=0,

    x=4,

    ∴2x﹣2=6,

    a=36,

    a﹣4b的算术平方根是4,

    a﹣4b=16,

    ∴36-4b=16

    b=5;

    (2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,

    b2+3a﹣8的立方根是5.

    【点睛】

    本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.

    3、

    【分析】

    根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可

    【详解】

    原式=

     =.

    【点睛】

    本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键.

    4、a+b的值为25+

    【分析】

    由9π≈28.26,可得其整数部分a=28,由27<28<64,可求得的小数部分,继而可得a+b的值.

    【详解】

    解:∵9π≈28.26,

    a=28,

    ∵27<28<64,

    ∴3<<4,

    b=-3,

    a+b=28+-3=25+

    a+b的值为25+

    【点睛】

    本题主要考查了估算无理数的大小,根据题意估算出ab的值是解答此题的关键.

    5、(1);(2)1+;(3)x=0,1,3,4

    【分析】

    (1)根据定义即可求出答案.

    (2)根据题意给出的变形方法即可求出答案.

    (3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.

    【详解】

    解:(1)根据题意,是一个假分式;

    故答案为:(答案不唯一).

    (2)

    故答案为:

    (3)∵

    x2=±1或x2=±2,

    x=0,1,3,4;

    【点睛】

    本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.

    6、2

    【分析】

    先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.

    【详解】

    解:

    【点睛】

    本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.

    7、

    (1)-3

    (2)-6x

    (3)4y-3xz

    【分析】

    (1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;

    (2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.

    (3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.

    (1)

    解:原式

    (2)

    解:原式

    (3)

    解:

    【点睛】

    本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(abn=anbn运算法则,整式的除法,理解a0=1(a≠0),a≠0),牢记法则是解题关键.

    8、3

    【分析】

    首先根据,求出x的值,然后代入x+17求解算术平方根即可.

    【详解】

    解:∵

    ∴5x+32=-8,

    解得:x=-8,

    x+17=-8+17=9,

    ∵9的算术平方根为3,

    x+17的算术平方根为 3,

    故答案为:3.

    【点睛】

    此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.

    9、(1);(2)

    【分析】

    (1)先计算乘方、立方根和算术平方根,再计算加减法即可得;

    (2)利用立方根解方程即可得.

    【详解】

    解:(1)原式

    (2)

    【点睛】

    本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.

    10、(1);(2);(3)13cm

    【分析】

    (1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;

    (2)将x=5代入计算可得;

    (3)根据题意列出方程求解即可.

    【详解】

    解:(1)空白部分面积为

    (2)当x=5时,空白部分面积为

    (3)根据题意得,

    解得x=13或-13(舍去),

    所以,大正方形的边长为13cm

    【点睛】

    此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.

     

    相关试卷

    沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共19页。试卷主要包含了下列运算正确的是,下列四个数中,最小的数是,三个实数,2,之间的大小关系,下列说法正确的是,下列说法中正确的有等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共20页。试卷主要包含了已知a=,b=-|-|,c=,实数在哪两个连续整数之间,9的平方根是,下列各数是无理数的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列实数比较大小正确的是,下列等式正确的是,若 ,则,有一个数值转换器,原理如下等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map