初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题
展开沪教版(上海)七年级数学第二学期第十二章实数专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法:①-27的立方根是3;②36的算数平方根是;③的立方根是;④的平方根是.其中正确说法的个数是( )
A.1 B.2 C.3 D.4
2、实数2,0,﹣3,﹣中,最小的数是( )
A.﹣3 B.﹣ C.2 D.0
3、下列说法正确的是( )
A.0.01是0.1的平方根
B.小于0.5
C.的小数部分是
D.任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方……如此进行下去,得到的数会越来越趋近1
4、9的平方根是( )
A.±3 B.-3 C.3 D.
5、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( )
A.2 B.4 C.8 D.6
6、下列判断中,你认为正确的是( )
A.0的倒数是0 B.是分数 C.3<<4 D.的值是±3
7、若 ,则 ( )
A. B. C. D.
8、的值等于( )
A. B.-2 C. D.2
9、如图,数轴上的点A,B,O,C,D分别表示数,,0,1,2,则表示数的点P应落在( ).
A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上
10、下列说法正确的是( )
A.是的平方根 B.是的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一列数按某规律排列如下,…若第n个数为,则n=_____.
2、已知x2=36,那么x=___________;如果(-a)2=(7)2,那么a=_____________
3、0.064的立方根是______.
4、在﹣(﹣),﹣1,|3﹣π|,0这四个数中,最小的数是 _____.
5、引入新数i,新数i满足分配律、结合律、交换律,已知,则_____.
三、解答题(10小题,每小题5分,共计50分)
1、阅读下面材料,并按要求完成相应问题:
定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.
例如:
应用:
(1)计算
(2)如果正整数a、b满足,求a、b的值.
(3)将化为(均为实数)的形式,(即化为分母中不含的形式).
2、计算:
(1);
(2).
3、已知的平方根是,的立方根是2,是的整数部分,求的算术平方根.
4、已知a,b,c,d是有理数,对于任意,我们规定:.
例如:.
根据上述规定解决下列问题:
(1)_________;
(2)若,求的值;
(3)已知,其中是小于10的正整数,若x是整数,求的值.
5、解方程:
(1)x2=25;
(2)8(x+1)3=125.
6、求下列各数的平方根:
(1)121 (2) (3)(-13)2 (4)
7、(1)计算:;
(2)求式中的x:(x+4)2=81.
8、计算
(1);
(2)
9、计算:
10、计算
(1)
(2)
-参考答案-
一、单选题
1、A
【分析】
分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.
【详解】
解:①-27的立方根是-3,错误;
②36的算数平方根是6,错误;
③的立方根是,正确;
④的平方根是,错误,
∴正确的说法有1个,
故选:A.
【点睛】
本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.
2、A
【分析】
根据实数的性质即可判断大小.
【详解】
解:∵﹣3<﹣<0<2
故选A.
【点睛】
此题主要考查实数的大小比较,解题的关键是熟知实数的性质.
3、C
【分析】
根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可.
【详解】
解:A、0.1是0.01的平方根,原说法错误,不符合题意;
B、由,得,原说法错误,不符合题意;
C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;
D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;
故选:C.
【点睛】
本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键.
4、A
【分析】
根据平方根的定义进行判断即可.
【详解】
解:∵(±3)2=9
∴9的平方根是±3
故选:A.
【点睛】
本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.
5、B
【分析】
经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.
【详解】
2n的个位数字是2,4,8,6循环,
所以810÷4=202…2,
则2810的末位数字是4.
故选:B.
【点睛】
本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.
6、C
【分析】
根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项.
【详解】
解:A、0不能作分母,所以0没有倒数,故本选项错误;
B、属于无理数,故本选项错误;
C、因为 9<15<16,所以 3<<4,故本选项正确;
D、的值是3,故本选项错误.
故选:C.
【点睛】
此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.
7、B
【分析】
先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.
【详解】
解:,
或(舍去),
,
故选:B.
【点睛】
本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.
8、D
【分析】
由于表示4的算术平方根,由此即可得到结果.
【详解】
解:∵4的算术平方根为2,
∴的值为2.
故选D.
【点睛】
此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.
9、B
【分析】
根据,得到,根据数轴与实数的关系解答.
【详解】
解:∵,
∴,
∴,
∴,
∴表示的点在线段BO上,
故选:B.
【点睛】
本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.
10、A
【分析】
根据平方根的定义及算术平方根的定义解答.
【详解】
解:A、是的平方根,故该项符合题意;
B、4是的算术平方根,故该项不符合题意;
C、2是4的算术平方根,故该项不符合题意;
D、1的平方根是,故该项不符合题意;
故选:A.
【点睛】
此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.
二、填空题
1、50
【分析】
根据题目中的数据可以发现,分子变化是,…,分母变化是,…,从而可以求得第个数为时的值,本题得以解决.
【详解】
解:
∴可写成
∴分母为10开头到分母为1的数有10个,分别为
∴第n个数为,则n=1+2+3+4+…+9+5=50,
故答案为50.
【点睛】
本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.
2、±6##6或-6 ±7
【分析】
根据平方根的定义求解即可.
【详解】
解:∵(±6)2=36,
∴当x2=36时,则x=±6;
∵(-a)2=(7)2,
∴a2=49,
∵(±7)2=49,
∴a=±7;
故答案为:±6;±7.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根.0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.
3、0.4
【分析】
根据立方根的定义直接求解即可.
【详解】
解:∵,
∴0.064的立方根是0.4.
故答案为:0.4.
【点睛】
本题考查了立方根,解决本题的关键是熟记立方根的定义.
4、-1
【分析】
先运用去括号、去绝对值的知识化简各数,然后根据实数的大小比较法则解答即可.
【详解】
解∵﹣(﹣)=,﹣1,|3﹣π|=π-3,0,
∴−1<0<π-3<,
∴这四个数中,最小的数是−1.
故填:−1.
【点睛】
本题主要考查了实数的大小比较法则、去绝对值、去括号等知识点,正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.
5、2
【分析】
先根据平方差公式化简,再把代入计算即可.
【详解】
解:.
故答案为2.
【点睛】
本题考查了新定义运算及平方差公式,熟练掌握平方差公式是解答本题的关键.
三、解答题
1、(1);(2)或;(3).
【分析】
(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;
(2)利用平方差公式计算得出答案;
(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.
【详解】
(1)
∵
∴原式
(2)
∵
∴
∵a、b是正整数
∴或
(3)
【点睛】
本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.
2、(1)1;(2)
【分析】
(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;
(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=,
=,
=.
【点睛】
本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.
3、
【分析】
直接利用平方根以及立方根和估算无理数的大小得出a,b,c的值进而得出答案.
【详解】
解:∵2a-1的平方根是±3,
∴2a-1=9,
解得:a=5,
∵3a+b-9的立方根是2,
∴15+b-9=8,
解得:b=2,
∵4<<5,c是的整数部分,
∴c=4,
∴a+2b+c=5+4+4=13,
∴a+2b+c的算术平方根为
【点睛】
此题主要考查了平方根以及立方根和估算无理数的大小,正确得出a,b,c的值是解题关键.
4、
(1)-5
(2)
(3)k=1,4,7.
【分析】
(1)根据规定代入数据求解即可;
(2)根据规定代入整式,利用方程的思想求解即可;
(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.
(1)
解:;
(2)
解:
即:
(3)
解:,
即:
因为是小于10的正整数且x是整数,
所以k=1时,x=3;k=4时,x=4;k=7时,x=5.
所以k=1,4,7.
【点睛】
本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.
5、(1);(2)
【分析】
(1)根据平方根的定义计算即可;
(2)根据立方根的定义计算即可;
【详解】
解:(1)x2=25
x=±5.
(2)
x+1=,
x=.
【点睛】
本题主要考查平方根、立方根,熟练掌握平方根、立方根的定义是解决本题的关键.
6、 (1)±11; (2) ; (3)±13; (4)±8
【分析】
(1)直接根据平方根的定义求解;
(2)把带分数化成假分数,再根据平方根的定义求解;
(3)(4)先化简,再根据平方根的定义求解.
【详解】
含有乘方运算先求出它的幂,再开平方.
(1)因为(±11)2=121,所以121的平方根是±11;
(2),因为, 所以的平方根是;
(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;
(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.
【点睛】
本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.
7、(1);(2)或
【分析】
(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;
(2)根据平方根的意义,计算出x的值.
【详解】
解:(1)原式
;
(2)由平方根的意义得:
或
∴或.
【点睛】
本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.
8、(1)1;(2).
【分析】
(1)计算乘方,零指数幂,算术平方根,负指数幂,再计算加减法即可;
(2)先立方根,零指数幂,绝对值化简,去括号合并即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=.
【点睛】
本题考查实数混合计算,零指数幂,负指数幂,算术平方根,立方根,绝对值,掌握以上知识是解题关键.
9、
【分析】
利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.
【详解】
解:原式=
【点睛】
此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.
10、
(1)-2
(2)1
【分析】
(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;
(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;
(1)
解:
;
(2)
解:
.
【点睛】
本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共19页。试卷主要包含了下列运算正确的是,下列四个数中,最小的数是,三个实数,2,之间的大小关系,下列说法正确的是,下列说法中正确的有等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共19页。试卷主要包含了观察下列算式,估计的值在,以下正方形的边长是无理数的是,4的平方根是,下列说法正确的是等内容,欢迎下载使用。

