搜索
    上传资料 赚现金
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向攻克试题(含详细解析)
    立即下载
    加入资料篮
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向攻克试题(含详细解析)01
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向攻克试题(含详细解析)02
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向攻克试题(含详细解析)03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪教版 (五四制)第十二章 实数综合与测试精练

    展开
    这是一份初中沪教版 (五四制)第十二章 实数综合与测试精练,共22页。试卷主要包含了计算2﹣1+30=,已知a=,b=-|-|,c=,规定一种新运算,下列说法正确的是,在以下实数,在实数中,无理数的个数是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数定向攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列说法正确的是(   )

    A.的平方根 B.的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身

    2、点A在数轴上的位置如图所示,则点A表示的数可能是(   

    A. B. C. D.

    3、如果x>1,那么x﹣1xx2的大小关系是(  )

    A.x﹣1xx2 B.xx﹣1x2 C.x2xx﹣1 D.x2x﹣1x

    4、计算2﹣1+30=(   

    A. B.﹣1 C.1 D.

    5、已知ab=-|-|,c=(-2)3,则abc的大小关系是(   

    A.bac B.bca C.cba D.acb

    6、规定一种新运算:,如.则的值是(    ).

    A. B. C.6 D.8

    7、下列说法正确的是(  )

    A.是分数

    B.0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数

    C.﹣3x2y+4x﹣1是三次三项式,常数项是1

    D.单项式﹣的次数是2,系数为﹣

    8、在以下实数:﹣π,3.1411,8,0.020020002…中,无理数有(  )

    A.2个 B.3个 C.4个 D.5个

    9、在实数中,无理数的个数是(  

    A.1 B.2 C.3 D.4

    10、若,那么   

    A.1 B.-1 C.-3 D.-5

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、比较大小:_____﹣(填“<”或“=”或“>”).

    2、比较大小:______3(填“>”、“<”或“=”).

    3、若mn是两个连续的整数,且,则______.

    4、计算下列各题:

    (1)|3﹣4|﹣1=_____;

    (2)_____;

    (3)30=_____;

    (4)_____.

    5、的算术平方根是_____,的立方根是_____,的倒数是_____.

    三、解答题(10小题,每小题5分,共计50分)

    1、已知ab互为相反数,cd互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.

    2、解方程:

    (1)x2=81;

    (2)(x﹣1)3=27.

    3、计算下列各题:

    (1)

    (2)

    (3)

    4、直接写出结果:

    (1)____________;

    (2)____________;

    (3)的立方根=____________;

    (4)若x2=(﹣7)2,则x=____________.

    5、(1)计算:

    (2)计算:(﹣2x22+x3xx5÷x

    (3)先化简再求值:2(a+2)2﹣4(a+3)(a﹣3)+3(a﹣1)2,其中a=﹣1.

    6、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?

    7、计算:

    8、解答下列各题:

    (1)计算:

    (2)分解因式:

    9、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.

    (1)用xcm表示图中空白部分的面积;

    (2)当x=5cm时空白部分面积为多少?

    (3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?

    10、阅读下列材料:

    根据你观察到的规律,解决下列问题:

    (1)写出①组中的第5个等式;

    (2)写出②组的第n个等式,并证明;

    (3)计算:

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    根据平方根的定义及算术平方根的定义解答.

    【详解】

    解:A的平方根,故该项符合题意;

    B、4是的算术平方根,故该项不符合题意;

    C、2是4的算术平方根,故该项不符合题意;

    D、1的平方根是,故该项不符合题意;

    故选:A

    【点睛】

    此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.

    2、A

    【分析】

    根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.

    【详解】

    解:观察得到点A表示的数在4至4.5之间,

    A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;

    B、∵9<10<16,∴3<<4,故该选项不符合题意;

    C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;

    D、∵25<30<36,∴5<<6,故该选项不符合题意;

    故选:A.

    【点睛】

    本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.

    3、A

    【分析】

    根据,即可得到,由此即可得到答案.

    【详解】

    解:∵

    故选A.

    【点睛】

    本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法.

    4、D

    【分析】

    利用负整数指数幂和零指数幂的意义进行化简计算即可.

    【详解】

    解:原式=+1=

    故选:D.

    【点睛】

    本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.

    5、C

    【分析】

    本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较.

    【详解】

    解:由题意得:a===4,b==c=-8,

    cba

    故选:C.

    【点睛】

    本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.

    6、C

    【分析】

    根据新定义计算法则把转化为常规下运算得出,然后按有理数运算法则计算即可.

    【详解】

    解:∵

    故选择C.

    【点睛】

    本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键.

    7、D

    【分析】

    根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.

    【详解】

    解:A、是无限不循环小数,不是分数,故此选项不符合题意;

    B、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;

    C、﹣3x2y+4x﹣1是三次三项式,常数项是-1,故此选项不符合题意;

    D、单项式﹣的次数是2,系数为﹣,故此选项符合题意;

    故选D.

    【点睛】

    本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.

    8、B

    【分析】

    根据“无限不循环的小数是无理数”可直接进行排除选项.

    【详解】

    解:∵

    ∴在以下实数:﹣π,3.1411,8,0.020020002…中,无理数有﹣π,0.020020002…;共3个;

    故选B.

    【点睛】

    本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键.

    9、B

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:=2,=2,,

    ∴无理数只有共2个.

    故选:B.

    【点睛】

    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

    10、D

    【分析】

    由非负数之和为,可得,解方程求得,代入问题得解.

    【详解】

    解:

    解得,

    故选:D

    【点睛】

    本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.

    二、填空题

    1、>

    【分析】

    先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.

    【详解】

    解:

    故答案为:>

    【点睛】

    本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键.

    2、<

    【分析】

    ,再利用不等式的基本性质可得,从而可得答案.

    【详解】

    解:∵

    故答案为:<.

    【点睛】

    本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.

    3、11

    【分析】

    根据无理数的估算方法求出的值,由此即可得.

    【详解】

    解:∵

    ∵5、6是两个连续的整数,且

    故答案为:11.

    【点睛】

    本题考查了无理数的估算和代数式求值,熟练掌握无理数的估算方法是解题关键.

    4、0    3    1       

    【分析】

    (1)先化简绝对值,再计算减法运算即可得;

    (2)先计算有理数的乘方,再计算算术平方根即可得;

    (3)计算零指数幂即可得;

    (4)根据分式的加法运算法则即可得.

    【详解】

    解:(1)原式

    故答案为:0;

    (2)原式

    故答案为:3;

    (3)原式

    故答案为:1;

    (4)原式

    故答案为:

    【点睛】

    本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.

    5、9

    【分析】

    根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.

    【详解】

    解:=81的算术平方根是9,=的立方根是的倒数是

    故答案为:-9,

    【点睛】

    本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.

    三、解答题

    1、-1

    【分析】

    由题意可知,将值代入即可.

    【详解】

    解:由题意得:

    解得

    【点睛】

    本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.

    2、(1)x=±9;(2)x=4

    【分析】

    (1)方程利用平方根定义开方即可求出解;

    (2)方程利用立方根定义开立方即可求出解.

    【详解】

    解:(1)开方得:x=±9;

    (2)开立方得:x﹣1=3,

    解得:x=4.

    【点睛】

    本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).

    3、

    (1)-3

    (2)-6x

    (3)4y-3xz

    【分析】

    (1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;

    (2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.

    (3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.

    (1)

    解:原式

    (2)

    解:原式

    (3)

    解:

    【点睛】

    本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(abn=anbn运算法则,整式的除法,理解a0=1(a≠0),a≠0),牢记法则是解题关键.

    4、(1)8;(2)0;(3)2;(4)

    【分析】

    (1)根据算术平方根的计算法则求解即可;

    (2)根据算术平方根的计算法则求解即可;

    (3)根据立方根的求解方法求解即可;

    (4)根据求平方根的方法解方程即可.

    【详解】

    解:(1)

    故答案为:8;

    (2)

    故答案为:0;

    (3)∵

    的立方根是2,

    故答案为:2;

    (4)∵x2=(﹣7)2

    x2=49,

    x=±7.

    故答案为:±7.

    【点睛】

    本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.

    5、(1)8﹣;(2)4x4;(3)a2+2a+47,46

    【分析】

    (1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;

    (2)先算乘方,再算乘除,然后合并同类项求解即可;

    (3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可.

    【详解】

    解:(1)原式=9﹣2﹣(﹣1)

    =7﹣+1

    =8﹣

    (2)原式=4x4+x4x4

    =4x4

    (3)原式=2(a2+4a+4)﹣4(a2﹣9)+3(a2﹣2a+1)

    =2a2+8a+8﹣4a2+36+3a2﹣6a+3

    a2+2a+47,

    a=﹣1时,

    原式=(﹣1)2+2×(﹣1)+47

    =1﹣2+47

    =46.

    【点睛】

    此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则.

    6、这个长方体的长、宽、高分别为

    【分析】

    根据题意设这个长方体的长、宽、高分别为4x、2xx,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.

    【详解】

    解:设这个长方体的长、宽、高分别为4x、2xx

    根据题意得:4x•2x=24,

    解得:xx=﹣(舍去).

    则4x=4,2x=2

    所以这个长方体的长、宽、高分别为4cm、2cmcm

    【点睛】

    本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.

    7、

    【分析】

    根据有理数的乘方运算,有理数的乘方运算,化简绝对值,最后进行实数的混合运算即可

    【详解】

    解:原式

    【点睛】

    本题考查了实数的混合运算,正确的计算是解题的关键.

    8、(1)①;②;(2)

    【分析】

    (1)①原式利用算术平方根、立方根性质,乘方的意义,以及绝对值的代数意义计算即可得到结果;②根据幂的乘方与积的乘方以及同底数幂的乘法法则进行计算,再进行合并同类项合并即可;

    (2)原式提取公因式x,再利用完全平方公式分解即可.

    【详解】

    解:(1)①

    (2)

    【点睛】

    此题考查了实数的运算、整式的乘除运算以及提公因式法与公式法的综合运用的知识点,熟练掌运算以及相关法则、方法是解本题的关键.

    9、(1);(2);(3)13cm

    【分析】

    (1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;

    (2)将x=5代入计算可得;

    (3)根据题意列出方程求解即可.

    【详解】

    解:(1)空白部分面积为

    (2)当x=5时,空白部分面积为

    (3)根据题意得,

    解得x=13或-13(舍去),

    所以,大正方形的边长为13cm

    【点睛】

    此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.

    10、

    (1)

    (2),证明见解析;

    (3)

    【分析】

    (1)根据前几个等式的变化规律即可求解;

    (2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;

    (3)根据前三组观察出的变化规律求解即可.

    (1)

    解:∵

    ∴第5个等式为

    (2)

    解:∵

    ∴第n个等式为

    证明:右边=

    左边=

    ∵右边=左边,

    (3)

    解:∵===

    =

    =

    =

    =

    =

    【点睛】

    本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键.

     

    相关试卷

    沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列实数比较大小正确的是,下列等式正确的是,若 ,则,有一个数值转换器,原理如下等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共21页。试卷主要包含了下列说法正确的是,观察下列算式,下列计算正确的是.,4的平方根是,在以下实数,的算术平方根是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共20页。试卷主要包含了下列说法中正确的有,规定一种新运算,a为有理数,定义运算符号▽,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map