初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习
展开沪教版(上海)七年级数学第二学期第十二章实数专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各数中,最小的数是( )
A.0 B. C. D.﹣3
2、若 ,则 ( )
A. B. C. D.
3、在0.1010010001…(相邻两个1之间依次多一个0),,,中,无理数有( )
A.1个 B.2个 C.3个 D.4个
4、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )
A.0个 B.1个 C.2个 D.3个
5、已知a=,b=-|-|,c=(-2)3,则a,b,c的大小关系是( )
A.b<a<c B.b<c<a C.c<b<a D.a<c<b
6、实数在哪两个连续整数之间( )
A.3与4 B.4与5 C.5与6 D.12与13
7、9的平方根是( )
A.±9 B.9 C.±3 D.3
8、下列各数是无理数的是( )
A. B.3.33 C. D.
9、实数2,0,﹣3,﹣中,最小的数是( )
A.﹣3 B.﹣ C.2 D.0
10、的算术平方根是( )
A.2 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、的平方根是________.
2、计算: = ______.
3、的整数部分是_____________.
4、计算______.
5、如图,A,B,C在数轴上对应的点分别为a,﹣1,,其中a<﹣1,且AB=BC,则|a|=_____.
三、解答题(10小题,每小题5分,共计50分)
1、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:
(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);
(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.
2、阅读下列材料:
①…
②…
③…
根据你观察到的规律,解决下列问题:
(1)写出①组中的第5个等式;
(2)写出②组的第n个等式,并证明;
(3)计算:.
3、计算题
(1);
(2)(﹣1)2021+.
4、(1)计算:;
(2)分解因式:.
5、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?
6、直接写出结果:
(1)____________;
(2)____________;
(3)的立方根=____________;
(4)若x2=(﹣7)2,则x=____________.
7、计算:(1);
(2).
8、已知a2=16,b3=27,求ab的值.
9、求方程中x 的值(x﹣1)2 ﹣16 = 0
10、(1)计算:﹣32﹣(2021)0+|﹣2|﹣()﹣2×(﹣);
(2)解方程:=﹣1.
-参考答案-
一、单选题
1、C
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:,
所给的各数中,最小的数是.
故选:C.
【点睛】
本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
2、B
【分析】
先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.
【详解】
解:,
或(舍去),
,
故选:B.
【点睛】
本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.
3、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;
是有理数;
是有理数;
是无理数;
∴无理数有2个,
故选B.
【点睛】
本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.
4、D
【分析】
理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
3.1415,0.321是有限小数,属于有理数;
是分数,属于有理数;
无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.
故选:D.
【点睛】
此题考查了无理数.解题的关键是掌握实数的分类.
5、C
【分析】
本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较.
【详解】
解:由题意得:a===4,b==,c==-8,
∴c<b<a.
故选:C.
【点睛】
本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.
6、B
【分析】
估算即可得到结果.
【详解】
解:,
,
故选:B.
【点睛】
本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.
7、C
【分析】
根据平方根的定义解答即可.
【详解】
解:∵(±3)2=9,
∴9的平方根是±3.
故选:C.
【点睛】
此题考查了平方根的定义,解题的关键是熟练掌握平方根的定义.如果一个数的平方等于a,即,那么这个数叫做a的平方根.正数有两个平方根,且互为相反数,其中正的那个数也叫算数平方根,0的平方根和算数平方根都是0,负数没有平方根,也没有算术平方根.
8、C
【分析】
无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.
【详解】
解:,是有理数,3.33和是有理数,是无理数,
故选:C.
【点睛】
本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.
9、A
【分析】
根据实数的性质即可判断大小.
【详解】
解:∵﹣3<﹣<0<2
故选A.
【点睛】
此题主要考查实数的大小比较,解题的关键是熟知实数的性质.
10、A
【分析】
根据算术平方根的定义即可求出结果.
【详解】
解:=4,4的算术平方根是2.
故选:A.
【点睛】
此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.
二、填空题
1、±
【分析】
直接根据平方根的定义求解即可.
【详解】
解:的平方根为±=±.
故答案为:±.
【点睛】
本题主要考查了平方根,知道一个正数有两个平方根是解决本题的关键.
2、##
【分析】
根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算
【详解】
解:
故答案为:
【点睛】
本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键.
3、3
【分析】
先估算的近似值,然后进行计算即可.
【详解】
解:,
的整数部分是3,
故答案为3.
【点睛】
本题考查了估算无理数的大小,解题的关键是熟练掌握求一个数的平方.
4、##
【分析】
根据立方根和算术平方根的求解方法求解即可.
【详解】
解:,
故答案为:.
【点睛】
本题主要考查了算术平方根和立方根,熟知二者的定义是解题的关键.
5、
【分析】
先根据数轴上点的位置求出,即可得到,由此求解即可.
【详解】
解:∵A,B,C在数轴上对应的点分别为a,﹣1, ,
∴,
∴,
∴,
∴,
故答案为:.
【点睛】
本题主要考查了实数与数轴,解题的关键在于能够根据题意求出.
三、解答题
1、(1)或;(2)9
【分析】
(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;
(2)由(1)可得:再把a2+b2=57,ab=12,利用平方根的含义解方程即可.
【详解】
解:(1) 大正方形的边长为
大正方形由两个小正方形与两个长方形组成,
(2)由(1)得:
a2+b2=57,ab=12,
则
【点睛】
本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.
2、
(1);
(2),证明见解析;
(3)
【分析】
(1)根据前几个等式的变化规律即可求解;
(2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;
(3)根据前三组观察出的变化规律求解即可.
(1)
解:∵,
∴第5个等式为;
(2)
解:∵,
∴第n个等式为,
证明:右边=,
左边=,
∵右边=左边,
∴;
(3)
解:∵=,=,=,
∴,
∴
=
=
=
=
=.
【点睛】
本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键.
3、(1)2+2;(2)4
【分析】
(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;
(2)原式利用乘方的意义,算术平方根定义计算即可得到结果.
【详解】
解:(1)原式=2﹣2+|﹣4|
=2﹣2+4
=2+2;
(2)原式=﹣1+5
=4.
【点睛】
本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.
4、(1);(2)
【分析】
(1)先计算乘方运算,求解算术平方根,化简绝对值,再合并即可;
(2)提取公因式即可.
【详解】
解:(1)解:原式
(2)解:原式
【点睛】
本题考查的是立方根的含义,绝对值的化简,实数的运算,提公因式法分解因式,掌握“实数的运算及提公因式分解因式”是解本题的关键.
5、这个长方体的长、宽、高分别为、、
【分析】
根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.
【详解】
解:设这个长方体的长、宽、高分别为4x、2x、x.
根据题意得:4x•2x=24,
解得:x=或x=﹣(舍去).
则4x=4,2x=2.
所以这个长方体的长、宽、高分别为4cm、2cm、cm.
【点睛】
本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.
6、(1)8;(2)0;(3)2;(4)
【分析】
(1)根据算术平方根的计算法则求解即可;
(2)根据算术平方根的计算法则求解即可;
(3)根据立方根的求解方法求解即可;
(4)根据求平方根的方法解方程即可.
【详解】
解:(1)
,
故答案为:8;
(2)
,
故答案为:0;
(3)∵,
∴的立方根是2,
故答案为:2;
(4)∵x2=(﹣7)2,
∴x2=49,
∴x=±7.
故答案为:±7.
【点睛】
本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.
7、(1);(2).
【分析】
(1)由题意利用算术平方根和立方根的性质进行化简计算即可;
(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.
【详解】
解:(1)
(2)
【点睛】
本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.
8、64或﹣64
【分析】
根据平方根、立方根、有理数的乘方解决此题.
【详解】
解:∵a2=16,b3=27,
∴a=±4,b=3.
当a=4,b=3时,ab=43=64.
当a=﹣4,b=3时,ab=(﹣4)3=﹣64.
综上:ab=64或﹣64.
【点睛】
本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.
9、或
【分析】
根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)
【详解】
解:(x﹣1)2 ﹣16 = 0
或
解得或
【点睛】
本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键.
10、(1)-7;(2)x=9.
【分析】
(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;
(2)直接去分母,移项合并同类项解方程即可.
【详解】
解:(1)原式=﹣9﹣1+2﹣9×(﹣)
=﹣9﹣1+2+1
=﹣7;
(2)去分母得:2x﹣3(1+x)=﹣12,
去括号得:2x﹣3﹣3x=﹣12,
移项得:2x﹣3x=﹣12+3,
合并同类项得:﹣x=﹣9,
系数化1得:x=9.
【点睛】
此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共19页。试卷主要包含了下列运算正确的是,下列四个数中,最小的数是,三个实数,2,之间的大小关系,下列说法正确的是,下列说法中正确的有等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题
沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共20页。试卷主要包含了下列各式中,化简结果正确的是,若关于x的方程,化简计算﹣的结果是,关于的叙述,错误的是等内容,欢迎下载使用。

