


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习
展开沪教版(上海)七年级数学第二学期第十二章实数同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在﹣3,0,2,这组数中,最小的数是( )
A. B.﹣3 C.0 D.2
2、下列语句正确的是( )
A.8的立方根是2 B.﹣3是27的立方根
C.的立方根是± D.(﹣1)2的立方根是﹣1
3、如果a、b分别是的整数部分和小数部分,那么的值是( )
A.8 B. C.4 D.
4、下列说法正确的是( )
A.是最小的正无理数 B.绝对值最小的实数不存在
C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应
5、估算的值是在( )之间
A.5和6 B.6和7 C.7和8 D.8和9
6、下列判断:①10的平方根是±;②与互为相反数;③0.1的算术平方根是0.01;④()3=a;⑤=±a2.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
7、下列说法不正确的是( )
A.0的平方根是0 B.一个负数的立方根是一个负数
C.﹣8的立方根是﹣2 D.8的算术平方根是2
8、的值等于( )
A. B.-2 C. D.2
9、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是( )
A.﹣ B.﹣3 C.|﹣3.14| D.﹣π
10、9的平方根是( )
A.±3 B.-3 C.3 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知的小数部分是a,的整数部分是b,则a+b=_________.
2、比较大小:_________.
3、计算:__________.
4、一列数按某规律排列如下,…若第n个数为,则n=_____.
5、若的平方根是±4,则a=___.
三、解答题(10小题,每小题5分,共计50分)
1、计算:
2、计算:.
3、计算
4、计算
(1)
(2)
5、计算:
6、(1)计算:;
(2)求式中的x:(x+4)2=81.
7、已知x-2的平方根是±2,x+2y+7的立方根是3,求3x+y的算术平方根.
8、已知a,b互为相反数,c,d互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.
9、阅读材料,回答问题.
下框中是小马同学的作业,老师看了后,找来小马.
问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”
小马点点头.
老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”
请把实数|﹣|,﹣π,﹣4,,2表示在数轴上,并比较它们的大小(用<号连接).
解:
请你帮小马同学将上面的作业做完.
10、如图是一个无理数筛选器的工作流程图.
(1)当x为16时,y值为______;
(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;
(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?
(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.
-参考答案-
一、单选题
1、B
【分析】
先确定3与的大小,再确定四个数的大小顺序,由此得到答案.
【详解】
解:∵9>7,
∴3>,
∴-3<,
∴-3<<0<2,
故选:B.
【点睛】
此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.
2、A
【分析】
利用立方根的运算法则,进行判断分析即可.
【详解】
解:A、8的立方根是2,故A正确.
B、3是27的立方根,故B错误.
C、的立方根是,故C错误.
D、(﹣1)2的立方根是1,故D错误.
故选:A.
【点睛】
本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.
3、B
【分析】
先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可
【详解】
则
a、b分别是的整数部分和小数部分,则
故选B
【点睛】
本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.
4、C
【分析】
利用正无理数,绝对值,以及数轴的性质判断即可.
【详解】
解:、不存在最小的正无理数,不符合题意;
、绝对值最小的实数是0,不符合题意;
、两个无理数的和不一定是无理数,例如:,符合题意;
、实数与数轴上的点一一对应,不符合题意.
故选:C.
【点睛】
本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.
5、C
【分析】
根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故.
【详解】
∵
∴
∴
故选:C.
【点睛】
本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.
6、C
【分析】
根据平方根和算术平方根的概念,对每一个答案一一判断对错.
【详解】
解:①10的平方根是±,正确;
②是相反数,正确;
③0.1的算术平方根是,故错误;
④()3=a,正确;
⑤a2,故错误;
正确的是①②④,有3个.
故选:C.
【点睛】
本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.
7、D
【分析】
直接利用算术平方根、平方根、立方根的定义分析得出答案.
【详解】
解:A、0的平方根是0,原说法正确,故此选项不符合题意;
B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;
C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;
D、8的算术平方根是2,原说法不正确,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.
8、D
【分析】
由于表示4的算术平方根,由此即可得到结果.
【详解】
解:∵4的算术平方根为2,
∴的值为2.
故选D.
【点睛】
此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.
9、D
【分析】
把数字从大到小排序,然后再找最小数.
【详解】
解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.
∴﹣π<﹣3<﹣<|﹣3.14|,
故选:D.
【点睛】
本题考查实数大小比较,掌握比较方法是本题关键.
10、A
【分析】
根据平方根的定义进行判断即可.
【详解】
解:∵(±3)2=9
∴9的平方根是±3
故选:A.
【点睛】
本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.
二、填空题
1、
【分析】
先分别求出和的范围,得到a、b的值,再代入a+b计算即可.
【详解】
∵2<<3,2<<3,
∴a=−2,b=2,
a+b=−2+2=,
故答案为.
【点睛】
本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.
2、<
【分析】
先把两个数同时平方后比较大小,因为都是正数,即平方后的数越大,其这个数越大,由此求解即可.
【详解】
解:∵,
∴,
故答案为:<.
【点睛】
本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.
3、2
【分析】
直接利用立方根、绝对值化简得出答案.
【详解】
解:原式.
故答案为:2.
【点睛】
本题主要考查了实数的运算,解题的关键是正确化简.
4、50
【分析】
根据题目中的数据可以发现,分子变化是,…,分母变化是,…,从而可以求得第个数为时的值,本题得以解决.
【详解】
解:
∴可写成
∴分母为10开头到分母为1的数有10个,分别为
∴第n个数为,则n=1+2+3+4+…+9+5=50,
故答案为50.
【点睛】
本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.
5、256
【分析】
根据平方根与算术平方根的定义即可求解.
【详解】
解:∵的平方根是±4,
∴,
∴,
故答案为:256.
【点睛】
此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果,那么就叫做b的平方根,如果对于两个正数有,则a是b的算术平方根.
三、解答题
1、
【分析】
根据立方根,算术平方根,绝对值的计算法则求解即可.
【详解】
解:
.
【点睛】
本题主要考查了立方根,算术平方根,绝对值,熟练掌握相关计算法则是解题的关键.
2、7
【分析】
根据实数的性质化简即可求解.
【详解】
解:原式
【点睛】
此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则.
3、
【分析】
直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案.
【详解】
解:
=
=
【点睛】
本题主要考查了实数的运算,正确化简各数是解题的关键.
4、
(1)-2
(2)1
【分析】
(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;
(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;
(1)
解:
;
(2)
解:
.
【点睛】
本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.
5、
【分析】
利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.
【详解】
解:原式=
【点睛】
此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.
6、(1);(2)或
【分析】
(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;
(2)根据平方根的意义,计算出x的值.
【详解】
解:(1)原式
;
(2)由平方根的意义得:
或
∴或.
【点睛】
本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.
7、5
【分析】
根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案.
【详解】
解:∵x-2的平方根是±2,
∴x-2=4,
解得:x=6,
∵x+2y+7的立方根是3,
∴6+2×y+7=27,
解得:y=7,
∴3x+y=25,
∴3x+y的算术平方根是5.
【点睛】
本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键.
8、-1
【分析】
由题意可知,,,,将值代入即可.
【详解】
解:由题意得:,;
解得
∴.
【点睛】
本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.
9、图见解析,﹣4<﹣π<|﹣|<2<.
【分析】
根据和确定原点,根据数轴上的点左边小于右边的排序依次表示即可.
【详解】
把实数||,,,,2表示在数轴上如图所示,
<<||<2<.
【点睛】
本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.
10、
(1)
(2)0,1
(3)x<0
(4)x=3或x=9或x=81.
【分析】
(1)根据运算规则即可求解;
(2)根据0的算术平方根是0,即可判断;
(3)根据二次根式有意义的条件,被开方数是非负数即可求解;
(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.
(1)
解:当x=16时,,则y=;
故答案是:.
(2)
解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;
(3)
解:当x<0时,导致开平方运算无法进行;
(4)
解: x的值不唯一.x=3或x=9或x=81.
【点睛】
本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共19页。试卷主要包含了在下列各数,若与互为相反数,则a,估计的值在,a为有理数,定义运算符号▽等内容,欢迎下载使用。
初中第十二章 实数综合与测试当堂检测题: 这是一份初中第十二章 实数综合与测试当堂检测题,共19页。试卷主要包含了4的平方根是,16的平方根是,在实数中,无理数的个数是,若 ,则,下列运算正确的是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共22页。试卷主要包含了若,则整数a的值不可能为,下列各组数中相等的是,已知a=,b=-|-|,c=,的算术平方根是,下列说法正确的是等内容,欢迎下载使用。