


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题
展开沪教版(上海)七年级数学第二学期第十二章实数同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是( )
A. B. C. D.
2、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).
A.2个 B.3个 C.4个 D.5个
3、3的算术平方根是( )
A.±3 B. C.-3 D.3
4、4的平方根是( )
A.2 B.﹣2 C.±2 D.没有平方根
5、对于两个有理数、,定义一种新的运算:,若,则的值为( )
A. B. C. D.
6、3的算术平方根为( )
A. B.9 C.±9 D.±
7、下列各式中正确的是( )
A. B. C. D.
8、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.2个 B.3个 C.4个 D.5个
9、实数2,0,﹣3,﹣中,最小的数是( )
A.﹣3 B.﹣ C.2 D.0
10、关于的叙述,错误的是( )
A.是无理数
B.面积为8的正方形边长是
C.的立方根是2
D.在数轴上可以找到表示的点
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、的平方根是__________.
2、设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,
(1)[﹣3.9)=______.
(2)下列结论中正确的是______(填写所有正确结论的序号)
①[0)=0;
②[x)﹣x的最小值是0;
③[x)﹣x的最大值是1;
④存在实数x,使[x)﹣x=0.5成立.
3、的平方根是______,______.
4、近几年来魔术风靡我国,小亮发明了一个魔术盒,把一个实数对(,)放入其中,就得到一个数为2-3+1,如把(3,2)放入其中,就得到32-32+1=4,若把(-3,2)放入其中,得到数,再把(,4)放入其中,则得到的数是___________.
5、若m、n是两个连续的整数,且,则______.
三、解答题(10小题,每小题5分,共计50分)
1、计算:
2、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为.
参考小燕同学的做法,解答下列问题:
(1)写出的小数部分为________;
(2)已知与的小数部分分别为a和b,求a2+2ab+b2的值;
(3)如果,其中x是整数,0<y<1,那么=________
(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为________(用含m,n的式子表示).
3、(1)计算:;
(2)计算:(﹣2x2)2+x3•x﹣x5÷x;
(3)先化简再求值:2(a+2)2﹣4(a+3)(a﹣3)+3(a﹣1)2,其中a=﹣1.
4、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72第一次[]=8,第二次[]=2,第三次[]=1,这样对72只需进行3次操作变为1.
(1)对10进行1次操作后变为_______,对200进行3次作后变为_______;
(2)对实数m恰进行2次操作后变成1,则m最小可以取到_______;
(3)若正整数m进行3次操作后变为1,求m的最大值.
5、计算:
(1)
(2)
6、求方程中x 的值(x﹣1)2 ﹣16 = 0
7、把下列各数分别填入相应的集合里.
,,0,,,,,,0.1010010001…(每两个1之间依次多一个0)
(1)整数集合:{ …}
(2)正数集合:{ …}
(3)无理数集合:{ …}
8、求下列各式中的值:
(1); (2).
9、计算:
(1)18+(﹣17)+7+(﹣8);
(2)×(﹣12);
(3)﹣22+|﹣1|+.
10、如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“风雨数”,并把数分解成的过程,称为“同行分解”.
例如:,和的十位数字相同,个位数字之和为,是“风雨数”.
又如:,和的十位数字相同,但个位数字之和不等于,不是“风雨数”.
(1)判断,是否是“风雨数”?并说明理由;
(2)把一个“风雨数”进行“同行分解”,即,与之和记为,与差的绝对值记为,令,当能被整除时,求出所有满足条件的.
-参考答案-
一、单选题
1、C
【分析】
首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由AB=AC利用两点间的距离公式便可解答.
【详解】
解:∵数轴上表示1,的对应点分别为A,B,
∴AB=−1,
∵点B关于点A的对称点为C,
∴AC=AB.
∴点C的坐标为:1−(−1)=2−.
故选:C.
【点睛】
本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.
2、D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:是有理数,
是无限循环小数,是有理数,
是分数,是有理数,
,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,
故选:D.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
3、B
【分析】
根据算术平方根的定义求解即可,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根.
【详解】
解:3的算术平方根是
故选B
【点睛】
本题考查了算术平方根的定义,掌握定义是解题的关键.
4、C
【分析】
根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.
【详解】
解:4的平方根,
即:,
故选:C.
【点睛】
题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.
5、D
【分析】
根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.
【详解】
解: ,
,
,
解得:
故选D
【点睛】
本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.
6、A
【分析】
利用算术平方根的定义求解即可.
【详解】
3的算术平方根是.
故选:A.
【点睛】
本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.
7、D
【分析】
由算术平方根的含义可判断A,B,C,由立方根的含义可判断D,从而可得答案.
【详解】
解:故A不符合题意;
故B不符合题意;
没有意义,故C不符合题意;
,运算正确,故D符合题意;
故选D
【点睛】
本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.
8、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=1,=2,,3,
∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
9、A
【分析】
根据实数的性质即可判断大小.
【详解】
解:∵﹣3<﹣<0<2
故选A.
【点睛】
此题主要考查实数的大小比较,解题的关键是熟知实数的性质.
10、C
【分析】
根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.
【详解】
解:A、是无理数,该说法正确,故本选项不符合题意;
B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;
C、8的立方根是2,该说法错误,故本选项符合题意;
D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.
二、填空题
1、
【分析】
先求出,再根据平方根性质,即可求解.
【详解】
解:∵,
∴的平方根是 .
故答案为:
【点睛】
本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.
2、-3; ③④
【分析】
(1)利用题中的新定义判断即可.
(2)根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.
【详解】
(1)表示大于-3.9的最小整数为-3,所以[﹣3.9)=-3
(2)解: ①[0)=1,故本项错误;
②[x)−x>0,但是取不到0,故本项错误;
③[x)−x⩽1,即最大值为1,故本项正确;
④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.
∴正确的选项是:③④;
故答案为:③④.
【点睛】
此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键.
3、±2 -8
【分析】
根据平方根的定义:如果对于一个数a和非负数b,有,那么a就叫做b的平方根;立方根的定义:对于c、d两个数,如果,那么c就叫做d的立方根,进行求解即可.
【详解】
解:∵,4的平方根为±2,
∴的平方根为±2,
,
故答案为:±2;-8.
【点睛】
本题主要考查了算术平方根,平方根和立方根,熟知相关定义是解题的关键.
4、5
【分析】
由魔术盒的性质可知m=(-3)2-32+1=4,故(4,4)在魔术盒中的数字为(4)2-34+1=5.
【详解】
将(-3,2)代入2-3+1
有(-3)2-32+1=4
故m=4
再将(4,4)代入2-3+1
有(4)2-34+1=5.
故答案为:5.
【点睛】
本题考查了新定义下的实数运算,按照定义的运算公式代入计算即可.
5、11
【分析】
根据无理数的估算方法求出、的值,由此即可得.
【详解】
解:∵,
∴,
∵5、6是两个连续的整数,且,
,
,
故答案为:11.
【点睛】
本题考查了无理数的估算和代数式求值,熟练掌握无理数的估算方法是解题关键.
三、解答题
1、
【分析】
根据立方根,算术平方根,绝对值的计算法则求解即可.
【详解】
解:
.
【点睛】
本题主要考查了立方根,算术平方根,绝对值,熟练掌握相关计算法则是解题的关键.
2、(1);(2)1;(3);(4)
【分析】
(1)由题意易得,则有的整数部分为3,然后问题可求解;
(2)由题意易得,则有,,然后可得,然后根据完全平方公式可进行求解;
(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;
(4)根据题意可直接进行求解.
【详解】
解:(1)∵,
∴的整数部分为3,
∴的小数部分为;
故答案为;
(2)∵,
∴,,
∵与的小数部分分别为a和b,
∴,
∴;
(3)由可知,
∵,
∴的小数部分为,
∵x是整数,0<y<1,
∴,
∴;
故答案为;
(4)∵无理数(m为正整数)的整数部分为n,
∴的小数部分为,
∴的小数部分即为的小数部分加1,为;
故答案为.
【点睛】
本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.
3、(1)8﹣;(2)4x4;(3)a2+2a+47,46
【分析】
(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;
(2)先算乘方,再算乘除,然后合并同类项求解即可;
(3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可.
【详解】
解:(1)原式=9﹣2﹣(﹣1)
=7﹣+1
=8﹣;
(2)原式=4x4+x4﹣x4
=4x4;
(3)原式=2(a2+4a+4)﹣4(a2﹣9)+3(a2﹣2a+1)
=2a2+8a+8﹣4a2+36+3a2﹣6a+3
=a2+2a+47,
当a=﹣1时,
原式=(﹣1)2+2×(﹣1)+47
=1﹣2+47
=46.
【点睛】
此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则.
4、(1)3;1;(2);(3)的最大值为255
【详解】
解:(1)∵,
∴,
∴,
∴对10进行1次操作后变为3;
同理可得,
∴,
同理可得,
∴,
同理可得,
∴,
∴对200进行3次作后变为1,
故答案为:3;1;
(2)设m进行第一次操作后的数为x,
∵,
∴.
∴.
∴.
∵要经过两次操作.
∴.
∴.
∴.
故答案为:.
(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x,
∵,
∴.
∴.
∴.
.
∴.
∵要经过3次操作,故.
∴.
∵是整数.
∴的最大值为255.
【点睛】
本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.
5、(1)5;(2)
【分析】
(1)分别求解算术平方根与立方根,再进行加减运算即可;
(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.
6、或
【分析】
根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)
【详解】
解:(x﹣1)2 ﹣16 = 0
或
解得或
【点睛】
本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键.
7、(1)整数集合:;(2)正数集合:;(3)无理数集合:.
【分析】
根据实数分类解题,实数分为有理数与无理数,无限不循环小数和开方不能开尽的数是无理数,整数和分数统称为有理数,整数包含正整数、0、负整数,
(1)根据整数的分类即可得;
(2)根据正数的分类即可得;
(3)根据无理数的分类即可得.
【详解】
解:+5是正整数,是无理数, 0是整数,-3.14是正分数,是正分数,-12是负整数,是负无理数,是正整数,(每两个1之间依次多一个0)是无理数;
故(1)整数集合:;
(2)正数集合:;
(3)无理数集合:.
【点睛】
本题考查实数的分类、有理数的分类等知识,掌握相关数的分类是解题关键.
8、(1);(2)
【分析】
(1)把原方程化为,再利用立方根的含义解方程即可;
(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.
【详解】
解:(1)
解得:
(2)
或
解得:
【点睛】
本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.
9、(1)0;(2)1;(3)
【分析】
(1)根据有理数的加法计算法则求解即可;
(2)根据有理数的乘法分配律求解即可;
(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.
【详解】
解:(1)
;
(2)
;
(3)
.
【点睛】
本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.
10、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)或或或
【分析】
根据新定义的“风雨数”即可得出答案;
设的十位数为,个位数为,则为,根据能被整除求出的可能的值,再由的值求出的值即可得出答案.
【详解】
解:,且,
是“风雨数”,
,,
不是“风雨数”;
设,则,
,,
能被整除,
,为整数,
,
是的倍数,
满足条件的有,,
若,则,为整数,
,
是的因数,
,,,,
满足条件的有,,,,
,或,或,或,,
或,
若,则,为整数,
,
是的因数,
,,,,,,,,
满足条件的有,,,,
,或,或,或,,
或,
综上,的值为或或或.
【点睛】
本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把和用含和的式子表示出来.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业,共21页。试卷主要包含了估计的值应该在.,若,那么,下列说法正确的是,下列各式中,化简结果正确的是,在0.1010010001…等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共19页。试卷主要包含了下列各组数中相等的是,估计的值在,下列说法正确的是,16的平方根是等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题,共19页。试卷主要包含了下列说法,64的立方根为.,若,则的值为,可以表示等内容,欢迎下载使用。